Vyřešte pro: x
x=\frac{-y^{2}-4}{3}
y\leq 0
Vyřešte pro: x (complex solution)
x=\frac{-y^{2}-4}{3}
arg(y)\geq \pi \text{ or }y=0
Vyřešte pro: y
y=-\sqrt{-3x-4}
x\leq -\frac{4}{3}
Graf
Sdílet
Zkopírováno do schránky
-\sqrt{-3x-4}=y
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
\frac{-\sqrt{-3x-4}}{-1}=\frac{y}{-1}
Vydělte obě strany hodnotou -1.
\sqrt{-3x-4}=\frac{y}{-1}
Dělení číslem -1 ruší násobení číslem -1.
\sqrt{-3x-4}=-y
Vydělte číslo y číslem -1.
-3x-4=y^{2}
Umocněte obě strany rovnice na druhou.
-3x-4-\left(-4\right)=y^{2}-\left(-4\right)
Připočítejte 4 k oběma stranám rovnice.
-3x=y^{2}-\left(-4\right)
Odečtením čísla -4 od něj samotného dostaneme hodnotu 0.
-3x=y^{2}+4
Odečtěte číslo -4 od čísla y^{2}.
\frac{-3x}{-3}=\frac{y^{2}+4}{-3}
Vydělte obě strany hodnotou -3.
x=\frac{y^{2}+4}{-3}
Dělení číslem -3 ruší násobení číslem -3.
x=\frac{-y^{2}-4}{3}
Vydělte číslo y^{2}+4 číslem -3.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}