Vyřešte pro: b
b=-xy
x\neq 0
Vyřešte pro: x
\left\{\begin{matrix}x=-\frac{b}{y}\text{, }&b\neq 0\text{ and }y\neq 0\\x\neq 0\text{, }&y=0\text{ and }b=0\end{matrix}\right,
Graf
Sdílet
Zkopírováno do schránky
yx=-b
Vynásobte obě strany rovnice hodnotou x.
-b=yx
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
-b=xy
Rovnice je ve standardním tvaru.
\frac{-b}{-1}=\frac{xy}{-1}
Vydělte obě strany hodnotou -1.
b=\frac{xy}{-1}
Dělení číslem -1 ruší násobení číslem -1.
b=-xy
Vydělte číslo yx číslem -1.
yx=-b
Proměnná x se nemůže rovnat hodnotě 0, protože není definováno dělení nulou. Vynásobte obě strany rovnice hodnotou x.
\frac{yx}{y}=-\frac{b}{y}
Vydělte obě strany hodnotou y.
x=-\frac{b}{y}
Dělení číslem y ruší násobení číslem y.
x=-\frac{b}{y}\text{, }x\neq 0
Proměnná x se nemůže rovnat 0.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}