Vyřešte pro: x (complex solution)
\left\{\begin{matrix}x=-\frac{i\ln(2e^{2y}-2\sqrt{e^{4y}-5e^{2y}+6}-5)}{2}+\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&-2e^{2y}+2\sqrt{e^{4y}-5e^{2y}+6}+5\neq 0\text{ and }Im(\ln(e^{y}))-Im(y)=0\\x=-\frac{i\ln(2e^{2y}+2\sqrt{e^{4y}-5e^{2y}+6}-5)}{2}+\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }&-2e^{2y}-2\sqrt{e^{4y}-5e^{2y}+6}+5\neq 0\text{ and }Im(\ln(e^{y}))-Im(y)=0\end{matrix}\right,
Vyřešte pro: y (complex solution)
y=\ln(\sqrt{2\left(\cos(2x)+5\right)})-\ln(2)
\nexists n_{2}\in \mathrm{Z}\text{ : }x=\pi n_{2}-\frac{i\ln(5-2\sqrt{6})}{2}+\frac{\pi }{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}-\frac{i\ln(2\sqrt{6}+5)}{2}+\frac{\pi }{2}
Vyřešte pro: x
\left\{\begin{matrix}x=\arccos(\sqrt{e^{2y}-2})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{; }x=-\arccos(\sqrt{e^{2y}-2})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&y\leq \frac{\ln(3)}{2}\text{ and }y\geq \frac{\ln(2)}{2}\text{ and }\sqrt{e^{2y}-2}\leq 1\\x=-\arccos(\sqrt{e^{2y}-2})+2\pi n_{3}+\pi \text{, }n_{3}\in \mathrm{Z}\text{; }x=\arccos(\sqrt{e^{2y}-2})+2\pi n_{4}-\pi \text{, }n_{4}\in \mathrm{Z}\text{, }&y\leq \frac{\ln(3)}{2}\text{ and }y\geq \frac{\ln(2)}{2}\text{ and }-\sqrt{e^{2y}-2}\geq -1\end{matrix}\right,
Vyřešte pro: y
y=\frac{\ln(\left(\cos(x)\right)^{2}+2)}{2}
Graf
Sdílet
Zkopírováno do schránky
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}