Přejít k hlavnímu obsahu
Math Solver will be retired on July 7, 2025. Solve math equations with Math Assistant in OneNote to help you reach solutions quickly.
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

a+b=-7 ab=1\times 12=12
Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako x^{2}+ax+bx+12. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
-1,-12 -2,-6 -3,-4
Vzhledem k tomu, že výraz ab je kladný, mají hodnoty a a b stejné znaménko. Vzhledem k tomu, že výraz a+b je záporný, mají obě hodnoty a i b záporné znaménko. Uveďte všechny celočíselné páry, které dávají 12 produktu.
-1-12=-13 -2-6=-8 -3-4=-7
Vypočtěte součet pro jednotlivé dvojice.
a=-4 b=-3
Řešením je dvojice se součtem -7.
\left(x^{2}-4x\right)+\left(-3x+12\right)
Zapište x^{2}-7x+12 jako: \left(x^{2}-4x\right)+\left(-3x+12\right).
x\left(x-4\right)-3\left(x-4\right)
Koeficient x v prvním a -3 ve druhé skupině.
\left(x-4\right)\left(x-3\right)
Vytkněte společný člen x-4 s využitím distributivnosti.
x^{2}-7x+12=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
Umocněte číslo -7 na druhou.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
Vynásobte číslo -4 číslem 12.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
Přidejte uživatele 49 do skupiny -48.
x=\frac{-\left(-7\right)±1}{2}
Vypočítejte druhou odmocninu čísla 1.
x=\frac{7±1}{2}
Opakem -7 je 7.
x=\frac{8}{2}
Teď vyřešte rovnici x=\frac{7±1}{2}, když ± je plus. Přidejte uživatele 7 do skupiny 1.
x=4
Vydělte číslo 8 číslem 2.
x=\frac{6}{2}
Teď vyřešte rovnici x=\frac{7±1}{2}, když ± je minus. Odečtěte číslo 1 od čísla 7.
x=3
Vydělte číslo 6 číslem 2.
x^{2}-7x+12=\left(x-4\right)\left(x-3\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 4 za x_{1} a 3 za x_{2}.