Přejít k hlavnímu obsahu
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

a+b=-5 ab=1\times 4=4
Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako x^{2}+ax+bx+4. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
-1,-4 -2,-2
Vzhledem k tomu, že výraz ab je kladný, mají hodnoty a a b stejné znaménko. Vzhledem k tomu, že výraz a+b je záporný, mají obě hodnoty a i b záporné znaménko. Uveďte všechny celočíselné páry, které dávají 4 produktu.
-1-4=-5 -2-2=-4
Vypočtěte součet pro jednotlivé dvojice.
a=-4 b=-1
Řešením je dvojice se součtem -5.
\left(x^{2}-4x\right)+\left(-x+4\right)
Zapište x^{2}-5x+4 jako: \left(x^{2}-4x\right)+\left(-x+4\right).
x\left(x-4\right)-\left(x-4\right)
Koeficient x v prvním a -1 ve druhé skupině.
\left(x-4\right)\left(x-1\right)
Vytkněte společný člen x-4 s využitím distributivnosti.
x^{2}-5x+4=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Umocněte číslo -5 na druhou.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Vynásobte číslo -4 číslem 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Přidejte uživatele 25 do skupiny -16.
x=\frac{-\left(-5\right)±3}{2}
Vypočítejte druhou odmocninu čísla 9.
x=\frac{5±3}{2}
Opakem -5 je 5.
x=\frac{8}{2}
Teď vyřešte rovnici x=\frac{5±3}{2}, když ± je plus. Přidejte uživatele 5 do skupiny 3.
x=4
Vydělte číslo 8 číslem 2.
x=\frac{2}{2}
Teď vyřešte rovnici x=\frac{5±3}{2}, když ± je minus. Odečtěte číslo 3 od čísla 5.
x=1
Vydělte číslo 2 číslem 2.
x^{2}-5x+4=\left(x-4\right)\left(x-1\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 4 za x_{1} a 1 za x_{2}.