Vyřešte pro: y
y=\frac{x}{4}+\frac{1}{4}-\frac{5}{4x}
x\neq 0
Vyřešte pro: x
x=\frac{\sqrt{16y^{2}-8y+21}}{2}+2y-\frac{1}{2}
x=-\frac{\sqrt{16y^{2}-8y+21}}{2}+2y-\frac{1}{2}
Graf
Sdílet
Zkopírováno do schránky
-4xy+x-5=-x^{2}
Odečtěte x^{2} od obou stran. Po odečtení hodnoty od nuly dostaneme stejnou zápornou hodnotu.
-4xy-5=-x^{2}-x
Odečtěte x od obou stran.
-4xy=-x^{2}-x+5
Přidat 5 na obě strany.
\left(-4x\right)y=5-x-x^{2}
Rovnice je ve standardním tvaru.
\frac{\left(-4x\right)y}{-4x}=\frac{5-x-x^{2}}{-4x}
Vydělte obě strany hodnotou -4x.
y=\frac{5-x-x^{2}}{-4x}
Dělení číslem -4x ruší násobení číslem -4x.
y=\frac{x}{4}+\frac{1}{4}-\frac{5}{4x}
Vydělte číslo -x^{2}-x+5 číslem -4x.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}