Vyřešte pro: k
k=\frac{x^{2}-2x-1}{2x+1}
x\neq -\frac{1}{2}
Vyřešte pro: x (complex solution)
x=\sqrt{\left(k+1\right)\left(k+2\right)}+k+1
x=-\sqrt{\left(k+1\right)\left(k+2\right)}+k+1
Vyřešte pro: x
x=\sqrt{\left(k+1\right)\left(k+2\right)}+k+1
x=-\sqrt{\left(k+1\right)\left(k+2\right)}+k+1\text{, }k\leq -2\text{ or }k\geq -1
Graf
Sdílet
Zkopírováno do schránky
x^{2}-2\left(k+1\right)x-k=1
Přidat 1 na obě strany. Po přičtení hodnoty nula dostaneme původní hodnotu.
x^{2}+\left(-2k-2\right)x-k=1
S využitím distributivnosti vynásobte číslo -2 číslem k+1.
x^{2}-2kx-2x-k=1
S využitím distributivnosti vynásobte číslo -2k-2 číslem x.
-2kx-2x-k=1-x^{2}
Odečtěte x^{2} od obou stran.
-2kx-k=1-x^{2}+2x
Přidat 2x na obě strany.
\left(-2x-1\right)k=1-x^{2}+2x
Slučte všechny členy obsahující k.
\left(-2x-1\right)k=1+2x-x^{2}
Rovnice je ve standardním tvaru.
\frac{\left(-2x-1\right)k}{-2x-1}=\frac{1+2x-x^{2}}{-2x-1}
Vydělte obě strany hodnotou -2x-1.
k=\frac{1+2x-x^{2}}{-2x-1}
Dělení číslem -2x-1 ruší násobení číslem -2x-1.
k=-\frac{1+2x-x^{2}}{2x+1}
Vydělte číslo 1-x^{2}+2x číslem -2x-1.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}