Přejít k hlavnímu obsahu
$\exponential{x}{2} + 6 x + 5 $
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

a+b=6 ab=1\times 5=5
Rozložte výraz vytýkáním. Nejdříve je nutné ho přepsat jako: x^{2}+ax+bx+5. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
a=1 b=5
Vzhledem k tomu, že výraz ab je kladný, mají hodnoty a a b stejné znaménko. Vzhledem k tomu, že a+b je pozitivní, a a b jsou kladné. Jediná taková dvojice představuje systémové řešení.
\left(x^{2}+x\right)+\left(5x+5\right)
Zapište x^{2}+6x+5 jako: \left(x^{2}+x\right)+\left(5x+5\right).
x\left(x+1\right)+5\left(x+1\right)
Vytkněte x z první závorky a 5 z druhé závorky.
\left(x+1\right)\left(x+5\right)
Vytkněte společný člen x+1 s využitím distributivnosti.
x^{2}+6x+5=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 5}}{2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-6±\sqrt{36-4\times 5}}{2}
Umocněte číslo 6 na druhou.
x=\frac{-6±\sqrt{36-20}}{2}
Vynásobte číslo -4 číslem 5.
x=\frac{-6±\sqrt{16}}{2}
Přidejte uživatele 36 do skupiny -20.
x=\frac{-6±4}{2}
Vypočítejte druhou odmocninu čísla 16.
x=-\frac{2}{2}
Teď vyřešte rovnici x=\frac{-6±4}{2}, když ± je plus. Přidejte uživatele -6 do skupiny 4.
x=-1
Vydělte číslo -2 číslem 2.
x=-\frac{10}{2}
Teď vyřešte rovnici x=\frac{-6±4}{2}, když ± je minus. Odečtěte číslo 4 od čísla -6.
x=-5
Vydělte číslo -10 číslem 2.
x^{2}+6x+5=\left(x-\left(-1\right)\right)\left(x-\left(-5\right)\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte -1 za x_{1} a -5 za x_{2}.
x^{2}+6x+5=\left(x+1\right)\left(x+5\right)
Zjednodušte všechny výrazy ve tvaru p-\left(-q\right) na p+q.