Rozložit
\left(x+5\right)\left(x+6\right)
Vyhodnotit
\left(x+5\right)\left(x+6\right)
Graf
Sdílet
Zkopírováno do schránky
a+b=11 ab=1\times 30=30
Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako x^{2}+ax+bx+30. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
1,30 2,15 3,10 5,6
Vzhledem k tomu, že výraz ab je kladný, mají hodnoty a a b stejné znaménko. Vzhledem k tomu, že a+b je pozitivní, a a b jsou kladné. Uveďte všechny celočíselné páry, které dávají 30 produktu.
1+30=31 2+15=17 3+10=13 5+6=11
Vypočtěte součet pro jednotlivé dvojice.
a=5 b=6
Řešením je dvojice se součtem 11.
\left(x^{2}+5x\right)+\left(6x+30\right)
Zapište x^{2}+11x+30 jako: \left(x^{2}+5x\right)+\left(6x+30\right).
x\left(x+5\right)+6\left(x+5\right)
Koeficient x v prvním a 6 ve druhé skupině.
\left(x+5\right)\left(x+6\right)
Vytkněte společný člen x+5 s využitím distributivnosti.
x^{2}+11x+30=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 30}}{2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-11±\sqrt{121-4\times 30}}{2}
Umocněte číslo 11 na druhou.
x=\frac{-11±\sqrt{121-120}}{2}
Vynásobte číslo -4 číslem 30.
x=\frac{-11±\sqrt{1}}{2}
Přidejte uživatele 121 do skupiny -120.
x=\frac{-11±1}{2}
Vypočítejte druhou odmocninu čísla 1.
x=-\frac{10}{2}
Teď vyřešte rovnici x=\frac{-11±1}{2}, když ± je plus. Přidejte uživatele -11 do skupiny 1.
x=-5
Vydělte číslo -10 číslem 2.
x=-\frac{12}{2}
Teď vyřešte rovnici x=\frac{-11±1}{2}, když ± je minus. Odečtěte číslo 1 od čísla -11.
x=-6
Vydělte číslo -12 číslem 2.
x^{2}+11x+30=\left(x-\left(-5\right)\right)\left(x-\left(-6\right)\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte -5 za x_{1} a -6 za x_{2}.
x^{2}+11x+30=\left(x+5\right)\left(x+6\right)
Zjednodušte všechny výrazy ve tvaru p-\left(-q\right) na p+q.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}