Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Derivovat vzhledem k x
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

\frac{x^{-1}\left(x-1\right)}{x-1}+\frac{1}{x-1}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo x^{-1} číslem \frac{x-1}{x-1}.
\frac{x^{-1}\left(x-1\right)+1}{x-1}
Vzhledem k tomu, že \frac{x^{-1}\left(x-1\right)}{x-1} a \frac{1}{x-1} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{1-\frac{1}{x}+1}{x-1}
Proveďte násobení ve výrazu x^{-1}\left(x-1\right)+1.
\frac{2-\frac{1}{x}}{x-1}
Slučte stejné členy ve výrazu 1-\frac{1}{x}+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-1}\left(x-1\right)}{x-1}+\frac{1}{x-1})
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo x^{-1} číslem \frac{x-1}{x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-1}\left(x-1\right)+1}{x-1})
Vzhledem k tomu, že \frac{x^{-1}\left(x-1\right)}{x-1} a \frac{1}{x-1} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-\frac{1}{x}+1}{x-1})
Proveďte násobení ve výrazu x^{-1}\left(x-1\right)+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-\frac{1}{x}}{x-1})
Slučte stejné členy ve výrazu 1-\frac{1}{x}+1.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{1}{x}+2)-\left(-\frac{1}{x}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
V případě jakýchkoli dvou diferencovatelných funkcí je derivace podílu dvou funkcí rozdílem mezi násobkem jmenovatele a derivace čitatele a násobkem čitatele a derivace jmenovatele, to celé děleno jmenovatelem na druhou.
\frac{\left(x^{1}-1\right)\left(-1\right)\left(-1\right)x^{-1-1}-\left(-\frac{1}{x}+2\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
Derivace mnohočlenu je součtem derivací jeho členů. Derivace konstanty je 0. Derivace členu ax^{n} je nax^{n-1}.
\frac{\left(x^{1}-1\right)x^{-2}-\left(-\frac{1}{x}+2\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Proveďte výpočet.
\frac{x^{1}x^{-2}-x^{-2}-\left(-\frac{1}{x}x^{0}+2x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Proveďte roznásobení s využitím distributivnosti.
\frac{x^{1-2}-x^{-2}-\left(-\frac{1}{x}+2x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele.
\frac{\frac{1}{x}-x^{-2}-\left(-\frac{1}{x}+2x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Proveďte výpočet.
\frac{\frac{1}{x}-x^{-2}-\left(-\frac{1}{x}\right)-2x^{0}}{\left(x^{1}-1\right)^{2}}
Odstraňte nepotřebné závorky.
\frac{\left(1-\left(-1\right)\right)\times \frac{1}{x}-x^{-2}-2x^{0}}{\left(x^{1}-1\right)^{2}}
Slučte stejné členy.
\frac{2\times \frac{1}{x}-x^{-2}-2x^{0}}{\left(x^{1}-1\right)^{2}}
Odečtěte číslo -1 od čísla 1.
\frac{\frac{1}{x^{2}}\left(2x^{1}-x^{0}-2x^{2}\right)}{\left(x^{1}-1\right)^{2}}
Vytkněte \frac{1}{x^{2}} před závorku.
\frac{\frac{1}{x^{2}}\left(2x-x^{0}-2x^{2}\right)}{\left(x-1\right)^{2}}
Pro všechny členy t, t^{1}=t.
\frac{\frac{1}{x^{2}}\left(2x-1-2x^{2}\right)}{\left(x-1\right)^{2}}
Pro všechny členy t s výjimkou 0, t^{0}=1.