Vyřešit pro: y
y\leq 0
Vyřešit pro: x
x\in \mathrm{R}
y\leq 0
Graf
Sdílet
Zkopírováno do schránky
x+y+y\leq x
Přidat y na obě strany.
x+2y\leq x
Sloučením y a y získáte 2y.
2y\leq x-x
Odečtěte x od obou stran.
2y\leq 0
Sloučením x a -x získáte 0.
y\leq 0
Součin dvou čísel je ≤0, pokud jedno z nich je ≥0 a druhé je ≤0. Vzhledem k tomu, že 2\geq 0, y musí být ≤0.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}