Vyřešte pro: k
k=-\frac{2x+5}{\left(x+2\right)^{2}}
x\neq -2
Vyřešte pro: x (complex solution)
\left\{\begin{matrix}x=\frac{-2k+\sqrt{1-k}-1}{k}\text{; }x=-\frac{2k+\sqrt{1-k}+1}{k}\text{, }&k\neq 0\\x=-\frac{5}{2}\text{, }&k=0\end{matrix}\right,
Vyřešte pro: x
\left\{\begin{matrix}x=\frac{-2k+\sqrt{1-k}-1}{k}\text{; }x=-\frac{2k+\sqrt{1-k}+1}{k}\text{, }&k\neq 0\text{ and }k\leq 1\\x=-\frac{5}{2}\text{, }&k=0\end{matrix}\right,
Graf
Sdílet
Zkopírováno do schránky
kx^{2}+4kx+2x+4k+5=0
S využitím distributivnosti vynásobte číslo 4k+2 číslem x.
kx^{2}+4kx+4k+5=-2x
Odečtěte 2x od obou stran. Po odečtení hodnoty od nuly dostaneme stejnou zápornou hodnotu.
kx^{2}+4kx+4k=-2x-5
Odečtěte 5 od obou stran.
\left(x^{2}+4x+4\right)k=-2x-5
Slučte všechny členy obsahující k.
\frac{\left(x^{2}+4x+4\right)k}{x^{2}+4x+4}=\frac{-2x-5}{x^{2}+4x+4}
Vydělte obě strany hodnotou x^{2}+4x+4.
k=\frac{-2x-5}{x^{2}+4x+4}
Dělení číslem x^{2}+4x+4 ruší násobení číslem x^{2}+4x+4.
k=-\frac{2x+5}{\left(x+2\right)^{2}}
Vydělte číslo -2x-5 číslem x^{2}+4x+4.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}