Vyřešte pro: g
g=\frac{x^{2}}{6}-x+\frac{5}{3}-\frac{1}{3x}
x\neq 0
Graf
Kvíz
Linear Equation
5 úloh podobných jako:
f ( x ) = x ^ { 3 } - 6 x ^ { 2 } + 11 x - 6 g ( x ) = x + 2
Sdílet
Zkopírováno do schránky
-6x^{2}+11x-6gx=x+2-x^{3}
Odečtěte x^{3} od obou stran.
11x-6gx=x+2-x^{3}+6x^{2}
Přidat 6x^{2} na obě strany.
-6gx=x+2-x^{3}+6x^{2}-11x
Odečtěte 11x od obou stran.
-6gx=-10x+2-x^{3}+6x^{2}
Sloučením x a -11x získáte -10x.
\left(-6x\right)g=2-10x+6x^{2}-x^{3}
Rovnice je ve standardním tvaru.
\frac{\left(-6x\right)g}{-6x}=\frac{2-10x+6x^{2}-x^{3}}{-6x}
Vydělte obě strany hodnotou -6x.
g=\frac{2-10x+6x^{2}-x^{3}}{-6x}
Dělení číslem -6x ruší násobení číslem -6x.
g=\frac{x^{2}}{6}-x+\frac{5}{3}-\frac{1}{3x}
Vydělte číslo -10x+2-x^{3}+6x^{2} číslem -6x.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}