Přejít k hlavnímu obsahu
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

a+b=3 ab=2\left(-5\right)=-10
Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako 2x^{2}+ax+bx-5. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
-1,10 -2,5
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je kladný, má kladné číslo vyšší absolutní hodnotu než záporné číslo. Uveďte všechny celočíselné páry, které dávají -10 produktu.
-1+10=9 -2+5=3
Vypočtěte součet pro jednotlivé dvojice.
a=-2 b=5
Řešením je dvojice se součtem 3.
\left(2x^{2}-2x\right)+\left(5x-5\right)
Zapište 2x^{2}+3x-5 jako: \left(2x^{2}-2x\right)+\left(5x-5\right).
2x\left(x-1\right)+5\left(x-1\right)
Koeficient 2x v prvním a 5 ve druhé skupině.
\left(x-1\right)\left(2x+5\right)
Vytkněte společný člen x-1 s využitím distributivnosti.
2x^{2}+3x-5=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Umocněte číslo 3 na druhou.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Vynásobte číslo -4 číslem 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Vynásobte číslo -8 číslem -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
Přidejte uživatele 9 do skupiny 40.
x=\frac{-3±7}{2\times 2}
Vypočítejte druhou odmocninu čísla 49.
x=\frac{-3±7}{4}
Vynásobte číslo 2 číslem 2.
x=\frac{4}{4}
Teď vyřešte rovnici x=\frac{-3±7}{4}, když ± je plus. Přidejte uživatele -3 do skupiny 7.
x=1
Vydělte číslo 4 číslem 4.
x=-\frac{10}{4}
Teď vyřešte rovnici x=\frac{-3±7}{4}, když ± je minus. Odečtěte číslo 7 od čísla -3.
x=-\frac{5}{2}
Vykraťte zlomek \frac{-10}{4} na základní tvar vytknutím a vykrácením hodnoty 2.
2x^{2}+3x-5=2\left(x-1\right)\left(x-\left(-\frac{5}{2}\right)\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 1 za x_{1} a -\frac{5}{2} za x_{2}.
2x^{2}+3x-5=2\left(x-1\right)\left(x+\frac{5}{2}\right)
Zjednodušte všechny výrazy ve tvaru p-\left(-q\right) na p+q.
2x^{2}+3x-5=2\left(x-1\right)\times \frac{2x+5}{2}
Připočítejte \frac{5}{2} ke x zjištěním společného jmenovatele a sečtením čitatelů. Pak vykraťte zlomek na jeho základní tvar, pokud je to možné.
2x^{2}+3x-5=\left(x-1\right)\left(2x+5\right)
Vykraťte 2, tj. největším společným dělitelem pro 2 a 2.