Derivovat vzhledem k y
\cos(y)
Vyhodnotit
\sin(y)
Graf
Sdílet
Zkopírováno do schránky
\frac{\mathrm{d}}{\mathrm{d}y}(\sin(y))=\left(\lim_{h\to 0}\frac{\sin(y+h)-\sin(y)}{h}\right)
Pro funkci f\left(x\right) je derivace limitou výrazu \frac{f\left(x+h\right)-f\left(x\right)}{h}, protože h se blíží k 0, pokud taková limita existuje.
\lim_{h\to 0}\frac{\sin(y+h)-\sin(y)}{h}
Použijte vzorec součtu pro sinus.
\lim_{h\to 0}\frac{\sin(y)\left(\cos(h)-1\right)+\cos(y)\sin(h)}{h}
Vytkněte \sin(y) před závorku.
\left(\lim_{h\to 0}\sin(y)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(y)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Zapište limitu.
\sin(y)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(y)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Využijte skutečnost, že y je konstanta při počítání limit, pokud se h blíží nule (0).
\sin(y)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(y)
Limita \lim_{y\to 0}\frac{\sin(y)}{y} je 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Aby bylo možné vyhodnotit limitu \lim_{h\to 0}\frac{\cos(h)-1}{h}, je nejdříve nutné vynásobit čitatele a jmenovatele číslem \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Vynásobte číslo \cos(h)+1 číslem \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Použijte Pythagorovu větu.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Zapište limitu.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Limita \lim_{y\to 0}\frac{\sin(y)}{y} je 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Využijte skutečnost, že funkce \frac{\sin(h)}{\cos(h)+1} je při hodnotě 0 spojitá.
\cos(y)
Dosaďte hodnotu 0 do výrazu \sin(y)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(y).
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}