Rozložit
\left(a-5\right)^{2}
Vyhodnotit
\left(a-5\right)^{2}
Sdílet
Zkopírováno do schránky
p+q=-10 pq=1\times 25=25
Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako a^{2}+pa+qa+25. Pokud chcete najít p a q, nastavte systém, který se má vyřešit.
-1,-25 -5,-5
Vzhledem k tomu, že výraz pq je kladný, mají hodnoty p a q stejné znaménko. Vzhledem k tomu, že výraz p+q je záporný, mají obě hodnoty p i q záporné znaménko. Uveďte všechny celočíselné páry, které dávají 25 produktu.
-1-25=-26 -5-5=-10
Vypočtěte součet pro jednotlivé dvojice.
p=-5 q=-5
Řešením je dvojice se součtem -10.
\left(a^{2}-5a\right)+\left(-5a+25\right)
Zapište a^{2}-10a+25 jako: \left(a^{2}-5a\right)+\left(-5a+25\right).
a\left(a-5\right)-5\left(a-5\right)
Koeficient a v prvním a -5 ve druhé skupině.
\left(a-5\right)\left(a-5\right)
Vytkněte společný člen a-5 s využitím distributivnosti.
\left(a-5\right)^{2}
Zapište rovnici jako druhou mocninu dvojčlenu.
factor(a^{2}-10a+25)
Tento trojčlen má tvar druhé mocniny trojčlenu, který může být vynásobený společným činitelem. Druhé mocniny trojčlenů je možné rozložit nalezením druhých odmocnin vedoucího a koncového členu.
\sqrt{25}=5
Najděte druhou odmocninu koncového členu, 25.
\left(a-5\right)^{2}
Druhá mocnina trojčlenu je druhá mocnina dvojčlenu, který je součtem nebo rozdílem druhých odmocnin vedoucího a koncového členu, přičemž znaménko se určuje podle znaménka středního členu druhé mocniny trojčlenu.
a^{2}-10a+25=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Umocněte číslo -10 na druhou.
a=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Vynásobte číslo -4 číslem 25.
a=\frac{-\left(-10\right)±\sqrt{0}}{2}
Přidejte uživatele 100 do skupiny -100.
a=\frac{-\left(-10\right)±0}{2}
Vypočítejte druhou odmocninu čísla 0.
a=\frac{10±0}{2}
Opakem -10 je 10.
a^{2}-10a+25=\left(a-5\right)\left(a-5\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 5 za x_{1} a 5 za x_{2}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}