Rozložit
9p\left(2000-p\right)
Vyhodnotit
9p\left(2000-p\right)
Sdílet
Zkopírováno do schránky
9\left(-p^{2}+2000p\right)
Vytkněte 9 před závorku.
p\left(-p+2000\right)
Zvažte -p^{2}+2000p. Vytkněte p před závorku.
9p\left(-p+2000\right)
Přepište celý rozložený výraz.
-9p^{2}+18000p=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
p=\frac{-18000±\sqrt{18000^{2}}}{2\left(-9\right)}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
p=\frac{-18000±18000}{2\left(-9\right)}
Vypočítejte druhou odmocninu čísla 18000^{2}.
p=\frac{-18000±18000}{-18}
Vynásobte číslo 2 číslem -9.
p=\frac{0}{-18}
Teď vyřešte rovnici p=\frac{-18000±18000}{-18}, když ± je plus. Přidejte uživatele -18000 do skupiny 18000.
p=0
Vydělte číslo 0 číslem -18.
p=-\frac{36000}{-18}
Teď vyřešte rovnici p=\frac{-18000±18000}{-18}, když ± je minus. Odečtěte číslo 18000 od čísla -18000.
p=2000
Vydělte číslo -36000 číslem -18.
-9p^{2}+18000p=-9p\left(p-2000\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 0 za x_{1} a 2000 za x_{2}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}