Vyřešte pro: y
y=\frac{1}{3^{x}}
Vyřešte pro: x (complex solution)
x=-\log_{3}\left(y\right)+\frac{2\pi n_{1}i}{\ln(3)}
n_{1}\in \mathrm{Z}
y\neq 0
Vyřešte pro: x
x=-\log_{3}\left(y\right)
y>0
Graf
Sdílet
Zkopírováno do schránky
9=y\times 3^{x+2}
Proměnná y se nemůže rovnat hodnotě 0, protože není definováno dělení nulou. Vynásobte obě strany rovnice hodnotou y.
y\times 3^{x+2}=9
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
3^{x+2}y=9
Rovnice je ve standardním tvaru.
\frac{3^{x+2}y}{3^{x+2}}=\frac{9}{3^{x+2}}
Vydělte obě strany hodnotou 3^{x+2}.
y=\frac{9}{3^{x+2}}
Dělení číslem 3^{x+2} ruší násobení číslem 3^{x+2}.
y=\frac{1}{3^{x}}
Vydělte číslo 9 číslem 3^{x+2}.
y=\frac{1}{3^{x}}\text{, }y\neq 0
Proměnná y se nemůže rovnat 0.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}