Vyhodnotit
\frac{14}{x+\sqrt{3}}
Derivovat vzhledem k x
-\frac{14}{\left(x+\sqrt{3}\right)^{2}}
Graf
Sdílet
Zkopírováno do schránky
7\times \frac{2\left(x-\sqrt{3}\right)}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}
Převeďte jmenovatele \frac{2}{x+\sqrt{3}} vynásobením čitatele a jmenovatele x-\sqrt{3}.
7\times \frac{2\left(x-\sqrt{3}\right)}{x^{2}-\left(\sqrt{3}\right)^{2}}
Zvažte \left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right). Násobení je možné převést na rozdíl druhých mocnin pomocí tohoto pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7\times \frac{2\left(x-\sqrt{3}\right)}{x^{2}-3}
Mocnina hodnoty \sqrt{3} je 3.
\frac{7\times 2\left(x-\sqrt{3}\right)}{x^{2}-3}
Vyjádřete 7\times \frac{2\left(x-\sqrt{3}\right)}{x^{2}-3} jako jeden zlomek.
\frac{14\left(x-\sqrt{3}\right)}{x^{2}-3}
Vynásobením 7 a 2 získáte 14.
\frac{14x-14\sqrt{3}}{x^{2}-3}
S využitím distributivnosti vynásobte číslo 14 číslem x-\sqrt{3}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}