Vyřešte pro: x
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1,666666667
x=\frac{1}{2}=0,5
Graf
Sdílet
Zkopírováno do schránky
6x^{2}+6x=5-x
S využitím distributivnosti vynásobte číslo 6x číslem x+1.
6x^{2}+6x-5=-x
Odečtěte 5 od obou stran.
6x^{2}+6x-5+x=0
Přidat x na obě strany.
6x^{2}+7x-5=0
Sloučením 6x a x získáte 7x.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-5\right)}}{2\times 6}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 6 za a, 7 za b a -5 za c.
x=\frac{-7±\sqrt{49-4\times 6\left(-5\right)}}{2\times 6}
Umocněte číslo 7 na druhou.
x=\frac{-7±\sqrt{49-24\left(-5\right)}}{2\times 6}
Vynásobte číslo -4 číslem 6.
x=\frac{-7±\sqrt{49+120}}{2\times 6}
Vynásobte číslo -24 číslem -5.
x=\frac{-7±\sqrt{169}}{2\times 6}
Přidejte uživatele 49 do skupiny 120.
x=\frac{-7±13}{2\times 6}
Vypočítejte druhou odmocninu čísla 169.
x=\frac{-7±13}{12}
Vynásobte číslo 2 číslem 6.
x=\frac{6}{12}
Teď vyřešte rovnici x=\frac{-7±13}{12}, když ± je plus. Přidejte uživatele -7 do skupiny 13.
x=\frac{1}{2}
Vykraťte zlomek \frac{6}{12} na základní tvar vytknutím a vykrácením hodnoty 6.
x=-\frac{20}{12}
Teď vyřešte rovnici x=\frac{-7±13}{12}, když ± je minus. Odečtěte číslo 13 od čísla -7.
x=-\frac{5}{3}
Vykraťte zlomek \frac{-20}{12} na základní tvar vytknutím a vykrácením hodnoty 4.
x=\frac{1}{2} x=-\frac{5}{3}
Rovnice je teď vyřešená.
6x^{2}+6x=5-x
S využitím distributivnosti vynásobte číslo 6x číslem x+1.
6x^{2}+6x+x=5
Přidat x na obě strany.
6x^{2}+7x=5
Sloučením 6x a x získáte 7x.
\frac{6x^{2}+7x}{6}=\frac{5}{6}
Vydělte obě strany hodnotou 6.
x^{2}+\frac{7}{6}x=\frac{5}{6}
Dělení číslem 6 ruší násobení číslem 6.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{5}{6}+\left(\frac{7}{12}\right)^{2}
Vydělte \frac{7}{6}, koeficient x termínu 2 k získání \frac{7}{12}. Potom přidejte čtvereček \frac{7}{12} na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{5}{6}+\frac{49}{144}
Umocněte zlomek \frac{7}{12} na druhou tak, že umocníte na druhou čitatele i jmenovatele zlomku.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{169}{144}
Připočítejte \frac{5}{6} ke \frac{49}{144} zjištěním společného jmenovatele a sečtením čitatelů. Pak vykraťte zlomek na jeho základní tvar, pokud je to možné.
\left(x+\frac{7}{12}\right)^{2}=\frac{169}{144}
Činitel x^{2}+\frac{7}{6}x+\frac{49}{144}. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Vypočítejte druhou odmocninu obou stran rovnice.
x+\frac{7}{12}=\frac{13}{12} x+\frac{7}{12}=-\frac{13}{12}
Proveďte zjednodušení.
x=\frac{1}{2} x=-\frac{5}{3}
Odečtěte hodnotu \frac{7}{12} od obou stran rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}