Vyhodnotit
\left(m-2n\right)\left(5m+8n\right)
Roznásobit
5m^{2}-2mn-16n^{2}
Sdílet
Zkopírováno do schránky
6m^{2}+6mn-\left(-m-4n\right)^{2}
S využitím distributivnosti vynásobte číslo 6m číslem m+n.
6m^{2}+6mn-\left(\left(-m\right)^{2}-8\left(-m\right)n+16n^{2}\right)
Rozviňte výraz \left(-m-4n\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
6m^{2}+6mn-\left(m^{2}-8\left(-m\right)n+16n^{2}\right)
Výpočtem -m na 2 získáte m^{2}.
6m^{2}+6mn-\left(m^{2}+8mn+16n^{2}\right)
Vynásobením -8 a -1 získáte 8.
6m^{2}+6mn-m^{2}-8mn-16n^{2}
Pokud chcete najít opačnou hodnotu k m^{2}+8mn+16n^{2}, najděte opačnou hodnotu k jednotlivým členům.
5m^{2}+6mn-8mn-16n^{2}
Sloučením 6m^{2} a -m^{2} získáte 5m^{2}.
5m^{2}-2mn-16n^{2}
Sloučením 6mn a -8mn získáte -2mn.
6m^{2}+6mn-\left(-m-4n\right)^{2}
S využitím distributivnosti vynásobte číslo 6m číslem m+n.
6m^{2}+6mn-\left(\left(-m\right)^{2}-8\left(-m\right)n+16n^{2}\right)
Rozviňte výraz \left(-m-4n\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
6m^{2}+6mn-\left(m^{2}-8\left(-m\right)n+16n^{2}\right)
Výpočtem -m na 2 získáte m^{2}.
6m^{2}+6mn-\left(m^{2}+8mn+16n^{2}\right)
Vynásobením -8 a -1 získáte 8.
6m^{2}+6mn-m^{2}-8mn-16n^{2}
Pokud chcete najít opačnou hodnotu k m^{2}+8mn+16n^{2}, najděte opačnou hodnotu k jednotlivým členům.
5m^{2}+6mn-8mn-16n^{2}
Sloučením 6m^{2} a -m^{2} získáte 5m^{2}.
5m^{2}-2mn-16n^{2}
Sloučením 6mn a -8mn získáte -2mn.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}