Vyhodnotit
96-228i
Reálná část
96
Sdílet
Zkopírováno do schránky
\left(6\left(-7\right)+6\times \left(6i\right)\right)\left(-4+2i\right)
Vynásobte číslo 6 číslem -7+6i.
\left(-42+36i\right)\left(-4+2i\right)
Proveďte násobení.
-42\left(-4\right)-42\times \left(2i\right)+36i\left(-4\right)+36\times 2i^{2}
Komplexní čísla -42+36i a -4+2i vynásobte podobně, jako násobíte dvojčleny.
-42\left(-4\right)-42\times \left(2i\right)+36i\left(-4\right)+36\times 2\left(-1\right)
i^{2} je podle definice -1.
168-84i-144i-72
Proveďte násobení.
168-72+\left(-84-144\right)i
Slučte reálné a imaginární části.
96-228i
Proveďte součty.
Re(\left(6\left(-7\right)+6\times \left(6i\right)\right)\left(-4+2i\right))
Vynásobte číslo 6 číslem -7+6i.
Re(\left(-42+36i\right)\left(-4+2i\right))
Proveďte násobení ve výrazu 6\left(-7\right)+6\times \left(6i\right).
Re(-42\left(-4\right)-42\times \left(2i\right)+36i\left(-4\right)+36\times 2i^{2})
Komplexní čísla -42+36i a -4+2i vynásobte podobně, jako násobíte dvojčleny.
Re(-42\left(-4\right)-42\times \left(2i\right)+36i\left(-4\right)+36\times 2\left(-1\right))
i^{2} je podle definice -1.
Re(168-84i-144i-72)
Proveďte násobení ve výrazu -42\left(-4\right)-42\times \left(2i\right)+36i\left(-4\right)+36\times 2\left(-1\right).
Re(168-72+\left(-84-144\right)i)
Zkombinujte reálné a imaginární části v 168-84i-144i-72.
Re(96-228i)
Proveďte součty ve výrazu 168-72+\left(-84-144\right)i.
96
Reálná část čísla 96-228i je 96.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}