Přejít k hlavnímu obsahu
Vyřešte pro: x
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

5=125x^{2}+\frac{1}{2}\times 50\left(x+0\times 2\right)^{2}
Vynásobením \frac{1}{2} a 250 získáte 125.
5=125x^{2}+25\left(x+0\times 2\right)^{2}
Vynásobením \frac{1}{2} a 50 získáte 25.
5=125x^{2}+25\left(x+0\right)^{2}
Vynásobením 0 a 2 získáte 0.
5=125x^{2}+25x^{2}
Po přičtení hodnoty nula dostaneme původní hodnotu.
5=150x^{2}
Sloučením 125x^{2} a 25x^{2} získáte 150x^{2}.
150x^{2}=5
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
x^{2}=\frac{5}{150}
Vydělte obě strany hodnotou 150.
x^{2}=\frac{1}{30}
Vykraťte zlomek \frac{5}{150} na základní tvar vytknutím a vykrácením hodnoty 5.
x=\frac{\sqrt{30}}{30} x=-\frac{\sqrt{30}}{30}
Vypočítejte druhou odmocninu obou stran rovnice.
5=125x^{2}+\frac{1}{2}\times 50\left(x+0\times 2\right)^{2}
Vynásobením \frac{1}{2} a 250 získáte 125.
5=125x^{2}+25\left(x+0\times 2\right)^{2}
Vynásobením \frac{1}{2} a 50 získáte 25.
5=125x^{2}+25\left(x+0\right)^{2}
Vynásobením 0 a 2 získáte 0.
5=125x^{2}+25x^{2}
Po přičtení hodnoty nula dostaneme původní hodnotu.
5=150x^{2}
Sloučením 125x^{2} a 25x^{2} získáte 150x^{2}.
150x^{2}=5
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
150x^{2}-5=0
Odečtěte 5 od obou stran.
x=\frac{0±\sqrt{0^{2}-4\times 150\left(-5\right)}}{2\times 150}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 150 za a, 0 za b a -5 za c.
x=\frac{0±\sqrt{-4\times 150\left(-5\right)}}{2\times 150}
Umocněte číslo 0 na druhou.
x=\frac{0±\sqrt{-600\left(-5\right)}}{2\times 150}
Vynásobte číslo -4 číslem 150.
x=\frac{0±\sqrt{3000}}{2\times 150}
Vynásobte číslo -600 číslem -5.
x=\frac{0±10\sqrt{30}}{2\times 150}
Vypočítejte druhou odmocninu čísla 3000.
x=\frac{0±10\sqrt{30}}{300}
Vynásobte číslo 2 číslem 150.
x=\frac{\sqrt{30}}{30}
Teď vyřešte rovnici x=\frac{0±10\sqrt{30}}{300}, když ± je plus.
x=-\frac{\sqrt{30}}{30}
Teď vyřešte rovnici x=\frac{0±10\sqrt{30}}{300}, když ± je minus.
x=\frac{\sqrt{30}}{30} x=-\frac{\sqrt{30}}{30}
Rovnice je teď vyřešená.