Vyřešte pro: x
x=\frac{\sqrt{30}}{30}\approx 0,182574186
x=-\frac{\sqrt{30}}{30}\approx -0,182574186
Graf
Sdílet
Zkopírováno do schránky
5=125x^{2}+\frac{1}{2}\times 50\left(x+0\times 2\right)^{2}
Vynásobením \frac{1}{2} a 250 získáte 125.
5=125x^{2}+25\left(x+0\times 2\right)^{2}
Vynásobením \frac{1}{2} a 50 získáte 25.
5=125x^{2}+25\left(x+0\right)^{2}
Vynásobením 0 a 2 získáte 0.
5=125x^{2}+25x^{2}
Po přičtení hodnoty nula dostaneme původní hodnotu.
5=150x^{2}
Sloučením 125x^{2} a 25x^{2} získáte 150x^{2}.
150x^{2}=5
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
x^{2}=\frac{5}{150}
Vydělte obě strany hodnotou 150.
x^{2}=\frac{1}{30}
Vykraťte zlomek \frac{5}{150} na základní tvar vytknutím a vykrácením hodnoty 5.
x=\frac{\sqrt{30}}{30} x=-\frac{\sqrt{30}}{30}
Vypočítejte druhou odmocninu obou stran rovnice.
5=125x^{2}+\frac{1}{2}\times 50\left(x+0\times 2\right)^{2}
Vynásobením \frac{1}{2} a 250 získáte 125.
5=125x^{2}+25\left(x+0\times 2\right)^{2}
Vynásobením \frac{1}{2} a 50 získáte 25.
5=125x^{2}+25\left(x+0\right)^{2}
Vynásobením 0 a 2 získáte 0.
5=125x^{2}+25x^{2}
Po přičtení hodnoty nula dostaneme původní hodnotu.
5=150x^{2}
Sloučením 125x^{2} a 25x^{2} získáte 150x^{2}.
150x^{2}=5
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
150x^{2}-5=0
Odečtěte 5 od obou stran.
x=\frac{0±\sqrt{0^{2}-4\times 150\left(-5\right)}}{2\times 150}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 150 za a, 0 za b a -5 za c.
x=\frac{0±\sqrt{-4\times 150\left(-5\right)}}{2\times 150}
Umocněte číslo 0 na druhou.
x=\frac{0±\sqrt{-600\left(-5\right)}}{2\times 150}
Vynásobte číslo -4 číslem 150.
x=\frac{0±\sqrt{3000}}{2\times 150}
Vynásobte číslo -600 číslem -5.
x=\frac{0±10\sqrt{30}}{2\times 150}
Vypočítejte druhou odmocninu čísla 3000.
x=\frac{0±10\sqrt{30}}{300}
Vynásobte číslo 2 číslem 150.
x=\frac{\sqrt{30}}{30}
Teď vyřešte rovnici x=\frac{0±10\sqrt{30}}{300}, když ± je plus.
x=-\frac{\sqrt{30}}{30}
Teď vyřešte rovnici x=\frac{0±10\sqrt{30}}{300}, když ± je minus.
x=\frac{\sqrt{30}}{30} x=-\frac{\sqrt{30}}{30}
Rovnice je teď vyřešená.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}