Přejít k hlavnímu obsahu
Vyřešte pro: n
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

3n^{2}=11
Sečtením 7 a 4 získáte 11.
n^{2}=\frac{11}{3}
Vydělte obě strany hodnotou 3.
n=\frac{\sqrt{33}}{3} n=-\frac{\sqrt{33}}{3}
Vypočítejte druhou odmocninu obou stran rovnice.
3n^{2}=11
Sečtením 7 a 4 získáte 11.
3n^{2}-11=0
Odečtěte 11 od obou stran.
n=\frac{0±\sqrt{0^{2}-4\times 3\left(-11\right)}}{2\times 3}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 3 za a, 0 za b a -11 za c.
n=\frac{0±\sqrt{-4\times 3\left(-11\right)}}{2\times 3}
Umocněte číslo 0 na druhou.
n=\frac{0±\sqrt{-12\left(-11\right)}}{2\times 3}
Vynásobte číslo -4 číslem 3.
n=\frac{0±\sqrt{132}}{2\times 3}
Vynásobte číslo -12 číslem -11.
n=\frac{0±2\sqrt{33}}{2\times 3}
Vypočítejte druhou odmocninu čísla 132.
n=\frac{0±2\sqrt{33}}{6}
Vynásobte číslo 2 číslem 3.
n=\frac{\sqrt{33}}{3}
Teď vyřešte rovnici n=\frac{0±2\sqrt{33}}{6}, když ± je plus.
n=-\frac{\sqrt{33}}{3}
Teď vyřešte rovnici n=\frac{0±2\sqrt{33}}{6}, když ± je minus.
n=\frac{\sqrt{33}}{3} n=-\frac{\sqrt{33}}{3}
Rovnice je teď vyřešená.