Přejít k hlavnímu obsahu
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

25\left(x^{2}+x-6\right)
Vytkněte 25 před závorku.
a+b=1 ab=1\left(-6\right)=-6
Zvažte x^{2}+x-6. Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako x^{2}+ax+bx-6. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
-1,6 -2,3
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je kladný, má kladné číslo vyšší absolutní hodnotu než záporné číslo. Uveďte všechny celočíselné páry, které dávají -6 produktu.
-1+6=5 -2+3=1
Vypočtěte součet pro jednotlivé dvojice.
a=-2 b=3
Řešením je dvojice se součtem 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
Zapište x^{2}+x-6 jako: \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
Koeficient x v prvním a 3 ve druhé skupině.
\left(x-2\right)\left(x+3\right)
Vytkněte společný člen x-2 s využitím distributivnosti.
25\left(x-2\right)\left(x+3\right)
Přepište celý rozložený výraz.
25x^{2}+25x-150=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
x=\frac{-25±\sqrt{25^{2}-4\times 25\left(-150\right)}}{2\times 25}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-25±\sqrt{625-4\times 25\left(-150\right)}}{2\times 25}
Umocněte číslo 25 na druhou.
x=\frac{-25±\sqrt{625-100\left(-150\right)}}{2\times 25}
Vynásobte číslo -4 číslem 25.
x=\frac{-25±\sqrt{625+15000}}{2\times 25}
Vynásobte číslo -100 číslem -150.
x=\frac{-25±\sqrt{15625}}{2\times 25}
Přidejte uživatele 625 do skupiny 15000.
x=\frac{-25±125}{2\times 25}
Vypočítejte druhou odmocninu čísla 15625.
x=\frac{-25±125}{50}
Vynásobte číslo 2 číslem 25.
x=\frac{100}{50}
Teď vyřešte rovnici x=\frac{-25±125}{50}, když ± je plus. Přidejte uživatele -25 do skupiny 125.
x=2
Vydělte číslo 100 číslem 50.
x=-\frac{150}{50}
Teď vyřešte rovnici x=\frac{-25±125}{50}, když ± je minus. Odečtěte číslo 125 od čísla -25.
x=-3
Vydělte číslo -150 číslem 50.
25x^{2}+25x-150=25\left(x-2\right)\left(x-\left(-3\right)\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 2 za x_{1} a -3 za x_{2}.
25x^{2}+25x-150=25\left(x-2\right)\left(x+3\right)
Zjednodušte všechny výrazy ve tvaru p-\left(-q\right) na p+q.