Vyřešte pro: A
A=\frac{256}{D^{2}}
D\neq 0
Vyřešte pro: D (complex solution)
D=-16A^{-\frac{1}{2}}
D=16A^{-\frac{1}{2}}\text{, }A\neq 0
Vyřešte pro: D
D=\frac{16}{\sqrt{A}}
D=-\frac{16}{\sqrt{A}}\text{, }A>0
Sdílet
Zkopírováno do schránky
400=AD^{2}+12^{2}
Výpočtem 20 na 2 získáte 400.
400=AD^{2}+144
Výpočtem 12 na 2 získáte 144.
AD^{2}+144=400
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
AD^{2}=400-144
Odečtěte 144 od obou stran.
AD^{2}=256
Odečtěte 144 od 400 a dostanete 256.
D^{2}A=256
Rovnice je ve standardním tvaru.
\frac{D^{2}A}{D^{2}}=\frac{256}{D^{2}}
Vydělte obě strany hodnotou D^{2}.
A=\frac{256}{D^{2}}
Dělení číslem D^{2} ruší násobení číslem D^{2}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}