Vyřešte pro: z
z=\frac{1}{2}=0,5
Sdílet
Zkopírováno do schránky
±\frac{5}{2},±5,±\frac{1}{2},±1
Podle věty o racionálních kořenech jsou všechny racionální kořeny polynomu ve tvaru \frac{p}{q}, kde p je dělitelem konstantního členu -5 a q je dělitelem vedoucího koeficientu 2. Uveďte všechny kandidáty \frac{p}{q}
z=\frac{1}{2}
Najděte jeden takový kořen tak, že vyzkoušíte všechny celočíselné hodnoty od nejmenší hodnoty po absolutní hodnotu. Pokud žádné celočíselné kořeny nenajdete, vyzkoušejte zlomky.
z^{2}+2z+5=0
Podle definice kořenového činitele představuje z-k kořenový činitel polynomu pro každý kořen k. Vydělte číslo 2z^{3}+3z^{2}+8z-5 číslem 2\left(z-\frac{1}{2}\right)=2z-1 a dostanete z^{2}+2z+5. Umožňuje vyřešit rovnici, ve které se výsledek rovná 0.
z=\frac{-2±\sqrt{2^{2}-4\times 1\times 5}}{2}
Všechny rovnice typu ax^{2}+bx+c=0 je možné vyřešit pomocí vzorce kvadratické rovnice: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. V uvedeném vzorci nahraďte a hodnotou 1, b hodnotou 2 a c hodnotou 5.
z=\frac{-2±\sqrt{-16}}{2}
Proveďte výpočty.
z\in \emptyset
Vzhledem k tomu, že v poli reálného čísla není definovaná druhá odmocnina záporného čísla, neexistují žádná řešení.
z=\frac{1}{2}
Uveďte všechna zjištěná řešení.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}