Vyřešte pro: x
x = -\frac{5}{2} = -2\frac{1}{2} = -2,5
x=1
Graf
Sdílet
Zkopírováno do schránky
2x^{2}+3x-12+7=0
Přidat 7 na obě strany.
2x^{2}+3x-5=0
Sečtením -12 a 7 získáte -5.
a+b=3 ab=2\left(-5\right)=-10
Chcete-li rovnici vyřešit, koeficient na levé straně seskupte. Nejprve je třeba přepsát levou stranu jako 2x^{2}+ax+bx-5. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
-1,10 -2,5
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je kladný, má kladné číslo vyšší absolutní hodnotu než záporné číslo. Uveďte všechny celočíselné páry, které dávají -10 produktu.
-1+10=9 -2+5=3
Vypočtěte součet pro jednotlivé dvojice.
a=-2 b=5
Řešením je dvojice se součtem 3.
\left(2x^{2}-2x\right)+\left(5x-5\right)
Zapište 2x^{2}+3x-5 jako: \left(2x^{2}-2x\right)+\left(5x-5\right).
2x\left(x-1\right)+5\left(x-1\right)
Koeficient 2x v prvním a 5 ve druhé skupině.
\left(x-1\right)\left(2x+5\right)
Vytkněte společný člen x-1 s využitím distributivnosti.
x=1 x=-\frac{5}{2}
Chcete-li najít řešení rovnic, vyřešte x-1=0 a 2x+5=0.
2x^{2}+3x-12=-7
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
2x^{2}+3x-12-\left(-7\right)=-7-\left(-7\right)
Připočítejte 7 k oběma stranám rovnice.
2x^{2}+3x-12-\left(-7\right)=0
Odečtením čísla -7 od něj samotného dostaneme hodnotu 0.
2x^{2}+3x-5=0
Odečtěte číslo -7 od čísla -12.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 2 za a, 3 za b a -5 za c.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Umocněte číslo 3 na druhou.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Vynásobte číslo -4 číslem 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Vynásobte číslo -8 číslem -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
Přidejte uživatele 9 do skupiny 40.
x=\frac{-3±7}{2\times 2}
Vypočítejte druhou odmocninu čísla 49.
x=\frac{-3±7}{4}
Vynásobte číslo 2 číslem 2.
x=\frac{4}{4}
Teď vyřešte rovnici x=\frac{-3±7}{4}, když ± je plus. Přidejte uživatele -3 do skupiny 7.
x=1
Vydělte číslo 4 číslem 4.
x=-\frac{10}{4}
Teď vyřešte rovnici x=\frac{-3±7}{4}, když ± je minus. Odečtěte číslo 7 od čísla -3.
x=-\frac{5}{2}
Vykraťte zlomek \frac{-10}{4} na základní tvar vytknutím a vykrácením hodnoty 2.
x=1 x=-\frac{5}{2}
Rovnice je teď vyřešená.
2x^{2}+3x-12=-7
Takové kvadratické rovnice je možné vyřešit doplněním na druhou mocninu dvojčlenu. Pokud chcete rovnici doplnit na druhou mocninu dvojčlenu, musí být nejdříve ve tvaru x^{2}+bx=c.
2x^{2}+3x-12-\left(-12\right)=-7-\left(-12\right)
Připočítejte 12 k oběma stranám rovnice.
2x^{2}+3x=-7-\left(-12\right)
Odečtením čísla -12 od něj samotného dostaneme hodnotu 0.
2x^{2}+3x=5
Odečtěte číslo -12 od čísla -7.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Vydělte obě strany hodnotou 2.
x^{2}+\frac{3}{2}x=\frac{5}{2}
Dělení číslem 2 ruší násobení číslem 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Vydělte \frac{3}{2}, koeficient x termínu 2 k získání \frac{3}{4}. Potom přidejte čtvereček \frac{3}{4} na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Umocněte zlomek \frac{3}{4} na druhou tak, že umocníte na druhou čitatele i jmenovatele zlomku.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Připočítejte \frac{5}{2} ke \frac{9}{16} zjištěním společného jmenovatele a sečtením čitatelů. Pak vykraťte zlomek na jeho základní tvar, pokud je to možné.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Činitel x^{2}+\frac{3}{2}x+\frac{9}{16}. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Vypočítejte druhou odmocninu obou stran rovnice.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Proveďte zjednodušení.
x=1 x=-\frac{5}{2}
Odečtěte hodnotu \frac{3}{4} od obou stran rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}