Vyhodnotit
\frac{167}{80}=2,0875
Rozložit
\frac{167}{2 ^ {4} \cdot 5} = 2\frac{7}{80} = 2,0875
Sdílet
Zkopírováno do schránky
2-\frac{4+3}{4}\left(\frac{1\times 5+1}{5}-\frac{1\times 4+1}{4}\right)
Vynásobením 1 a 4 získáte 4.
2-\frac{7}{4}\left(\frac{1\times 5+1}{5}-\frac{1\times 4+1}{4}\right)
Sečtením 4 a 3 získáte 7.
2-\frac{7}{4}\left(\frac{5+1}{5}-\frac{1\times 4+1}{4}\right)
Vynásobením 1 a 5 získáte 5.
2-\frac{7}{4}\left(\frac{6}{5}-\frac{1\times 4+1}{4}\right)
Sečtením 5 a 1 získáte 6.
2-\frac{7}{4}\left(\frac{6}{5}-\frac{4+1}{4}\right)
Vynásobením 1 a 4 získáte 4.
2-\frac{7}{4}\left(\frac{6}{5}-\frac{5}{4}\right)
Sečtením 4 a 1 získáte 5.
2-\frac{7}{4}\left(\frac{24}{20}-\frac{25}{20}\right)
Nejmenší společný násobek čísel 5 a 4 je 20. Převeďte \frac{6}{5} a \frac{5}{4} na zlomky se jmenovatelem 20.
2-\frac{7}{4}\times \frac{24-25}{20}
Vzhledem k tomu, že \frac{24}{20} a \frac{25}{20} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
2-\frac{7}{4}\left(-\frac{1}{20}\right)
Odečtěte 25 od 24 a dostanete -1.
2-\frac{7\left(-1\right)}{4\times 20}
Vynásobte zlomek \frac{7}{4} zlomkem -\frac{1}{20} tak, že vynásobíte čitatele čitatelem a jmenovatele jmenovatelem.
2-\frac{-7}{80}
Proveďte násobení ve zlomku \frac{7\left(-1\right)}{4\times 20}.
2-\left(-\frac{7}{80}\right)
Zlomek \frac{-7}{80} může být přepsán jako -\frac{7}{80} extrahováním záporného znaménka.
2+\frac{7}{80}
Opakem -\frac{7}{80} je \frac{7}{80}.
\frac{160}{80}+\frac{7}{80}
Umožňuje převést 2 na zlomek \frac{160}{80}.
\frac{160+7}{80}
Vzhledem k tomu, že \frac{160}{80} a \frac{7}{80} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{167}{80}
Sečtením 160 a 7 získáte 167.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}