Vyřešte pro: Y
Y=\frac{4\left(ne^{3n}+3e^{3n}+2\right)}{\left(n^{2}+2n+5\right)e^{3n}}
Sdílet
Zkopírováno do schránky
2n^{2}Y-8n-8+4\left(nY-4\right)+10Y=16e^{-3n}
S využitím distributivnosti vynásobte číslo 2 číslem n^{2}Y-4n-4.
2n^{2}Y-8n-8+4nY-16+10Y=16e^{-3n}
S využitím distributivnosti vynásobte číslo 4 číslem nY-4.
2n^{2}Y-8n-24+4nY+10Y=16e^{-3n}
Odečtěte 16 od -8 a dostanete -24.
2n^{2}Y-24+4nY+10Y=16e^{-3n}+8n
Přidat 8n na obě strany.
2n^{2}Y+4nY+10Y=16e^{-3n}+8n+24
Přidat 24 na obě strany.
\left(2n^{2}+4n+10\right)Y=16e^{-3n}+8n+24
Slučte všechny členy obsahující Y.
\left(2n^{2}+4n+10\right)Y=\frac{16}{e^{3n}}+8n+24
Rovnice je ve standardním tvaru.
\frac{\left(2n^{2}+4n+10\right)Y}{2n^{2}+4n+10}=\frac{\frac{16}{e^{3n}}+8n+24}{2n^{2}+4n+10}
Vydělte obě strany hodnotou 2n^{2}+4n+10.
Y=\frac{\frac{16}{e^{3n}}+8n+24}{2n^{2}+4n+10}
Dělení číslem 2n^{2}+4n+10 ruší násobení číslem 2n^{2}+4n+10.
Y=\frac{4\left(ne^{3n}+3e^{3n}+2\right)}{\left(n^{2}+2n+5\right)e^{3n}}
Vydělte číslo 24+8n+\frac{16}{e^{3n}} číslem 2n^{2}+4n+10.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}