Vyhodnotit
-34x^{2}+41x-8
Roznásobit
-34x^{2}+41x-8
Graf
Sdílet
Zkopírováno do schránky
-30x^{2}+8x+\left(4x-1\right)\left(-x+8\right)
S využitím distributivnosti vynásobte číslo -2x číslem 15x-4.
-30x^{2}+8x+4x\left(-x\right)+32x-\left(-x\right)-8
S využitím distributivnosti roznásobte každý člen výrazu 4x-1 každým členem výrazu -x+8.
-30x^{2}+8x+4x\left(-x\right)+32x+x-8
Vynásobením -1 a -1 získáte 1.
-30x^{2}+8x+4x\left(-x\right)+33x-8
Sloučením 32x a x získáte 33x.
-30x^{2}+41x+4x\left(-x\right)-8
Sloučením 8x a 33x získáte 41x.
-30x^{2}+41x+4x^{2}\left(-1\right)-8
Vynásobením x a x získáte x^{2}.
-30x^{2}+41x-4x^{2}-8
Vynásobením 4 a -1 získáte -4.
-34x^{2}+41x-8
Sloučením -30x^{2} a -4x^{2} získáte -34x^{2}.
-30x^{2}+8x+\left(4x-1\right)\left(-x+8\right)
S využitím distributivnosti vynásobte číslo -2x číslem 15x-4.
-30x^{2}+8x+4x\left(-x\right)+32x-\left(-x\right)-8
S využitím distributivnosti roznásobte každý člen výrazu 4x-1 každým členem výrazu -x+8.
-30x^{2}+8x+4x\left(-x\right)+32x+x-8
Vynásobením -1 a -1 získáte 1.
-30x^{2}+8x+4x\left(-x\right)+33x-8
Sloučením 32x a x získáte 33x.
-30x^{2}+41x+4x\left(-x\right)-8
Sloučením 8x a 33x získáte 41x.
-30x^{2}+41x+4x^{2}\left(-1\right)-8
Vynásobením x a x získáte x^{2}.
-30x^{2}+41x-4x^{2}-8
Vynásobením 4 a -1 získáte -4.
-34x^{2}+41x-8
Sloučením -30x^{2} a -4x^{2} získáte -34x^{2}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}