Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Rozložit
Tick mark Image

Sdílet

-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Sečtením \frac{1}{3} a \frac{7}{9} získáte \frac{10}{9}.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Výpočtem \frac{10}{9} na 2 získáte \frac{100}{81}.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Odečtěte \frac{1}{2} od 1 a dostanete \frac{1}{2}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Výpočtem \frac{1}{2} na 2 získáte \frac{1}{4}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Výpočtem -2 na 3 získáte -8.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Vynásobením \frac{1}{4} a -8 získáte -2.
-\frac{\frac{100}{81}}{-\frac{7}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Odečtěte \frac{3}{2} od -2 a dostanete -\frac{7}{2}.
-\frac{100}{81}\left(-\frac{2}{7}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Vydělte číslo \frac{100}{81} zlomkem -\frac{7}{2} tak, že číslo \frac{100}{81} vynásobíte převrácenou hodnotou zlomku -\frac{7}{2}.
-\left(-\frac{200}{567}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Vynásobením \frac{100}{81} a -\frac{2}{7} získáte -\frac{200}{567}.
\frac{200}{567}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Opakem -\frac{200}{567} je \frac{200}{567}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Výpočtem -\frac{1}{6} na 2 získáte \frac{1}{36}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Odečtěte \frac{1}{5} od \frac{1}{4} a dostanete \frac{1}{20}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Odečtěte \frac{2}{5} od 1 a dostanete \frac{3}{5}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\frac{9}{25}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Výpočtem \frac{3}{5} na 2 získáte \frac{9}{25}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{1}{20}\times \frac{25}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Vydělte číslo \frac{1}{20} zlomkem \frac{9}{25} tak, že číslo \frac{1}{20} vynásobíte převrácenou hodnotou zlomku \frac{9}{25}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{5}{36}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Vynásobením \frac{1}{20} a \frac{25}{9} získáte \frac{5}{36}.
\frac{200}{567}+\left(\frac{1}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Sečtením -\frac{1}{36} a \frac{5}{36} získáte \frac{1}{9}.
\frac{200}{567}+\frac{1}{81}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Výpočtem \frac{1}{9} na 2 získáte \frac{1}{81}.
\frac{23}{63}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Sečtením \frac{200}{567} a \frac{1}{81} získáte \frac{23}{63}.
\frac{23}{63}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
Odečtěte \frac{2}{9} od \frac{1}{3} a dostanete \frac{1}{9}.
\frac{23}{63}-\frac{\frac{1}{9}}{-\frac{7}{4}}
Odečtěte \frac{15}{8} od \frac{1}{8} a dostanete -\frac{7}{4}.
\frac{23}{63}-\frac{1}{9}\left(-\frac{4}{7}\right)
Vydělte číslo \frac{1}{9} zlomkem -\frac{7}{4} tak, že číslo \frac{1}{9} vynásobíte převrácenou hodnotou zlomku -\frac{7}{4}.
\frac{23}{63}-\left(-\frac{4}{63}\right)
Vynásobením \frac{1}{9} a -\frac{4}{7} získáte -\frac{4}{63}.
\frac{23}{63}+\frac{4}{63}
Opakem -\frac{4}{63} je \frac{4}{63}.
\frac{3}{7}
Sečtením \frac{23}{63} a \frac{4}{63} získáte \frac{3}{7}.