Vyhodnotit
\left(3x+1\right)\left(x^{2}-49\right)
Roznásobit
3x^{3}+x^{2}-147x-49
Graf
Sdílet
Zkopírováno do schránky
\left(3x^{2}+x-21x-7\right)\left(x+7\right)
S využitím distributivnosti roznásobte každý člen výrazu x-7 každým členem výrazu 3x+1.
\left(3x^{2}-20x-7\right)\left(x+7\right)
Sloučením x a -21x získáte -20x.
3x^{3}+21x^{2}-20x^{2}-140x-7x-49
S využitím distributivnosti roznásobte každý člen výrazu 3x^{2}-20x-7 každým členem výrazu x+7.
3x^{3}+x^{2}-140x-7x-49
Sloučením 21x^{2} a -20x^{2} získáte x^{2}.
3x^{3}+x^{2}-147x-49
Sloučením -140x a -7x získáte -147x.
\left(3x^{2}+x-21x-7\right)\left(x+7\right)
S využitím distributivnosti roznásobte každý člen výrazu x-7 každým členem výrazu 3x+1.
\left(3x^{2}-20x-7\right)\left(x+7\right)
Sloučením x a -21x získáte -20x.
3x^{3}+21x^{2}-20x^{2}-140x-7x-49
S využitím distributivnosti roznásobte každý člen výrazu 3x^{2}-20x-7 každým členem výrazu x+7.
3x^{3}+x^{2}-140x-7x-49
Sloučením 21x^{2} a -20x^{2} získáte x^{2}.
3x^{3}+x^{2}-147x-49
Sloučením -140x a -7x získáte -147x.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}