Přejít k hlavnímu obsahu
Vyřešte pro: x
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

x^{2}-x-2=4
S využitím distributivnosti vynásobte číslo x+1 číslem x-2 a slučte stejné členy.
x^{2}-x-2-4=0
Odečtěte 4 od obou stran.
x^{2}-x-6=0
Odečtěte 4 od -2 a dostanete -6.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, -1 za b a -6 za c.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Vynásobte číslo -4 číslem -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Přidejte uživatele 1 do skupiny 24.
x=\frac{-\left(-1\right)±5}{2}
Vypočítejte druhou odmocninu čísla 25.
x=\frac{1±5}{2}
Opakem -1 je 1.
x=\frac{6}{2}
Teď vyřešte rovnici x=\frac{1±5}{2}, když ± je plus. Přidejte uživatele 1 do skupiny 5.
x=3
Vydělte číslo 6 číslem 2.
x=-\frac{4}{2}
Teď vyřešte rovnici x=\frac{1±5}{2}, když ± je minus. Odečtěte číslo 5 od čísla 1.
x=-2
Vydělte číslo -4 číslem 2.
x=3 x=-2
Rovnice je teď vyřešená.
x^{2}-x-2=4
S využitím distributivnosti vynásobte číslo x+1 číslem x-2 a slučte stejné členy.
x^{2}-x=4+2
Přidat 2 na obě strany.
x^{2}-x=6
Sečtením 4 a 2 získáte 6.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Vydělte -1, koeficient x termínu 2 k získání -\frac{1}{2}. Potom přidejte čtvereček -\frac{1}{2} na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Umocněte zlomek -\frac{1}{2} na druhou tak, že umocníte na druhou čitatele i jmenovatele zlomku.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Přidejte uživatele 6 do skupiny \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Činitel x^{2}-x+\frac{1}{4}. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Vypočítejte druhou odmocninu obou stran rovnice.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Proveďte zjednodušení.
x=3 x=-2
Připočítejte \frac{1}{2} k oběma stranám rovnice.