Vyhodnotit
x^{14}+8x^{8}+21x^{2}-7
Roznásobit
x^{14}+8x^{8}+21x^{2}-7
Graf
Sdílet
Zkopírováno do schránky
\left(x^{7}\right)^{2}+8x^{7}x+16x^{2}+5x^{2}-7
Rozviňte výraz \left(x^{7}+4x\right)^{2} podle binomické věty \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{14}+8x^{7}x+16x^{2}+5x^{2}-7
Pokud chcete mocninu dále umocnit, vynásobte mocnitele. Vynásobením 7 a 2 získáte 14.
x^{14}+8x^{8}+16x^{2}+5x^{2}-7
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele. Sečtením 7 a 1 získáte 8.
x^{14}+8x^{8}+21x^{2}-7
Sloučením 16x^{2} a 5x^{2} získáte 21x^{2}.
\left(x^{7}\right)^{2}+8x^{7}x+16x^{2}+5x^{2}-7
Rozviňte výraz \left(x^{7}+4x\right)^{2} podle binomické věty \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{14}+8x^{7}x+16x^{2}+5x^{2}-7
Pokud chcete mocninu dále umocnit, vynásobte mocnitele. Vynásobením 7 a 2 získáte 14.
x^{14}+8x^{8}+16x^{2}+5x^{2}-7
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele. Sečtením 7 a 1 získáte 8.
x^{14}+8x^{8}+21x^{2}-7
Sloučením 16x^{2} a 5x^{2} získáte 21x^{2}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}