Vyřešte pro: x
x=\sqrt{7}+5\approx 7,645751311
x=5-\sqrt{7}\approx 2,354248689
Graf
Sdílet
Zkopírováno do schránky
x^{2}-9x+20-x=2
Odečtěte x od obou stran.
x^{2}-10x+20=2
Sloučením -9x a -x získáte -10x.
x^{2}-10x+20-2=0
Odečtěte 2 od obou stran.
x^{2}-10x+18=0
Odečtěte 2 od 20 a dostanete 18.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 18}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, -10 za b a 18 za c.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 18}}{2}
Umocněte číslo -10 na druhou.
x=\frac{-\left(-10\right)±\sqrt{100-72}}{2}
Vynásobte číslo -4 číslem 18.
x=\frac{-\left(-10\right)±\sqrt{28}}{2}
Přidejte uživatele 100 do skupiny -72.
x=\frac{-\left(-10\right)±2\sqrt{7}}{2}
Vypočítejte druhou odmocninu čísla 28.
x=\frac{10±2\sqrt{7}}{2}
Opakem -10 je 10.
x=\frac{2\sqrt{7}+10}{2}
Teď vyřešte rovnici x=\frac{10±2\sqrt{7}}{2}, když ± je plus. Přidejte uživatele 10 do skupiny 2\sqrt{7}.
x=\sqrt{7}+5
Vydělte číslo 10+2\sqrt{7} číslem 2.
x=\frac{10-2\sqrt{7}}{2}
Teď vyřešte rovnici x=\frac{10±2\sqrt{7}}{2}, když ± je minus. Odečtěte číslo 2\sqrt{7} od čísla 10.
x=5-\sqrt{7}
Vydělte číslo 10-2\sqrt{7} číslem 2.
x=\sqrt{7}+5 x=5-\sqrt{7}
Rovnice je teď vyřešená.
x^{2}-9x+20-x=2
Odečtěte x od obou stran.
x^{2}-10x+20=2
Sloučením -9x a -x získáte -10x.
x^{2}-10x=2-20
Odečtěte 20 od obou stran.
x^{2}-10x=-18
Odečtěte 20 od 2 a dostanete -18.
x^{2}-10x+\left(-5\right)^{2}=-18+\left(-5\right)^{2}
Vydělte -10, koeficient x termínu 2 k získání -5. Potom přidejte čtvereček -5 na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}-10x+25=-18+25
Umocněte číslo -5 na druhou.
x^{2}-10x+25=7
Přidejte uživatele -18 do skupiny 25.
\left(x-5\right)^{2}=7
Činitel x^{2}-10x+25. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{7}
Vypočítejte druhou odmocninu obou stran rovnice.
x-5=\sqrt{7} x-5=-\sqrt{7}
Proveďte zjednodušení.
x=\sqrt{7}+5 x=5-\sqrt{7}
Připočítejte 5 k oběma stranám rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}