Vyřešte pro: x
x=-4
x=3
Graf
Sdílet
Zkopírováno do schránky
x^{2}+x-90=-78
S využitím distributivnosti vynásobte číslo x+10 číslem x-9 a slučte stejné členy.
x^{2}+x-90+78=0
Přidat 78 na obě strany.
x^{2}+x-12=0
Sečtením -90 a 78 získáte -12.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, 1 za b a -12 za c.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
Umocněte číslo 1 na druhou.
x=\frac{-1±\sqrt{1+48}}{2}
Vynásobte číslo -4 číslem -12.
x=\frac{-1±\sqrt{49}}{2}
Přidejte uživatele 1 do skupiny 48.
x=\frac{-1±7}{2}
Vypočítejte druhou odmocninu čísla 49.
x=\frac{6}{2}
Teď vyřešte rovnici x=\frac{-1±7}{2}, když ± je plus. Přidejte uživatele -1 do skupiny 7.
x=3
Vydělte číslo 6 číslem 2.
x=-\frac{8}{2}
Teď vyřešte rovnici x=\frac{-1±7}{2}, když ± je minus. Odečtěte číslo 7 od čísla -1.
x=-4
Vydělte číslo -8 číslem 2.
x=3 x=-4
Rovnice je teď vyřešená.
x^{2}+x-90=-78
S využitím distributivnosti vynásobte číslo x+10 číslem x-9 a slučte stejné členy.
x^{2}+x=-78+90
Přidat 90 na obě strany.
x^{2}+x=12
Sečtením -78 a 90 získáte 12.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Vydělte 1, koeficient x termínu 2 k získání \frac{1}{2}. Potom přidejte čtvereček \frac{1}{2} na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Umocněte zlomek \frac{1}{2} na druhou tak, že umocníte na druhou čitatele i jmenovatele zlomku.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Přidejte uživatele 12 do skupiny \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Činitel x^{2}+x+\frac{1}{4}. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Vypočítejte druhou odmocninu obou stran rovnice.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Proveďte zjednodušení.
x=3 x=-4
Odečtěte hodnotu \frac{1}{2} od obou stran rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}