Vyřešte pro: x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{2\left(-32m^{2}\ln(m^{2})-19\ln(m^{2})+128m^{4}-256m^{3}-160m^{2}-171\right)}-16m^{2}+16m}{\ln(m^{2})+9}\text{; }x=\frac{-\sqrt{2\left(-32m^{2}\ln(m^{2})-19\ln(m^{2})+128m^{4}-256m^{3}-160m^{2}-171\right)}-16m^{2}+16m}{\ln(m^{2})+9}\text{, }&m\neq -\frac{1}{e^{\frac{9}{2}}}\text{ and }m\neq \frac{1}{e^{\frac{9}{2}}}\text{ and }m\neq 0\\x=-\frac{32m^{2}+19}{16m\left(m-1\right)}\text{, }&m=-\frac{1}{e^{\frac{9}{2}}}\text{ or }m=\frac{1}{e^{\frac{9}{2}}}\end{matrix}\right,
Vyřešte pro: x
\left\{\begin{matrix}x=\frac{\sqrt{2\left(-32m^{2}\ln(m^{2})-19\ln(m^{2})+128m^{4}-256m^{3}-160m^{2}-171\right)}-16m^{2}+16m}{\ln(m^{2})+9}\text{; }x=\frac{-\sqrt{2\left(-32m^{2}\ln(m^{2})-19\ln(m^{2})+128m^{4}-256m^{3}-160m^{2}-171\right)}-16m^{2}+16m}{\ln(m^{2})+9}\text{, }&m\neq 0\text{ and }-256m^{2}\ln(m^{2})-152\ln(m^{2})+1024m^{4}-2048m^{3}-1280m^{2}\geq 1368\text{ and }|m|\neq \frac{1}{e^{\frac{9}{2}}}\\x=-\frac{32m^{2}+19}{16m\left(m-1\right)}\text{, }&|m|=\frac{1}{e^{\frac{9}{2}}}\end{matrix}\right,
Graf
Sdílet
Zkopírováno do schránky
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}