Přejít k hlavnímu obsahu
Vyřešte pro: B (complex solution)
Tick mark Image
Vyřešte pro: g (complex solution)
Tick mark Image
Vyřešte pro: B
Tick mark Image
Vyřešte pro: g
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

3-x+Bgx-Bg=\pi
S využitím distributivnosti vynásobte číslo Bg číslem x-1.
-x+Bgx-Bg=\pi -3
Odečtěte 3 od obou stran.
Bgx-Bg=\pi -3+x
Přidat x na obě strany.
\left(gx-g\right)B=\pi -3+x
Slučte všechny členy obsahující B.
\left(gx-g\right)B=x+\pi -3
Rovnice je ve standardním tvaru.
\frac{\left(gx-g\right)B}{gx-g}=\frac{x+\pi -3}{gx-g}
Vydělte obě strany hodnotou gx-g.
B=\frac{x+\pi -3}{gx-g}
Dělení číslem gx-g ruší násobení číslem gx-g.
B=\frac{x+\pi -3}{g\left(x-1\right)}
Vydělte číslo x-3+\pi číslem gx-g.
3-x+Bgx-Bg=\pi
S využitím distributivnosti vynásobte číslo Bg číslem x-1.
-x+Bgx-Bg=\pi -3
Odečtěte 3 od obou stran.
Bgx-Bg=\pi -3+x
Přidat x na obě strany.
\left(Bx-B\right)g=\pi -3+x
Slučte všechny členy obsahující g.
\left(Bx-B\right)g=x+\pi -3
Rovnice je ve standardním tvaru.
\frac{\left(Bx-B\right)g}{Bx-B}=\frac{x+\pi -3}{Bx-B}
Vydělte obě strany hodnotou Bx-B.
g=\frac{x+\pi -3}{Bx-B}
Dělení číslem Bx-B ruší násobení číslem Bx-B.
g=\frac{x+\pi -3}{B\left(x-1\right)}
Vydělte číslo x-3+\pi číslem Bx-B.
3-x+Bgx-Bg=\pi
S využitím distributivnosti vynásobte číslo Bg číslem x-1.
-x+Bgx-Bg=\pi -3
Odečtěte 3 od obou stran.
Bgx-Bg=\pi -3+x
Přidat x na obě strany.
\left(gx-g\right)B=\pi -3+x
Slučte všechny členy obsahující B.
\left(gx-g\right)B=x+\pi -3
Rovnice je ve standardním tvaru.
\frac{\left(gx-g\right)B}{gx-g}=\frac{x+\pi -3}{gx-g}
Vydělte obě strany hodnotou gx-g.
B=\frac{x+\pi -3}{gx-g}
Dělení číslem gx-g ruší násobení číslem gx-g.
B=\frac{x+\pi -3}{g\left(x-1\right)}
Vydělte číslo x-3+\pi číslem gx-g.
3-x+Bgx-Bg=\pi
S využitím distributivnosti vynásobte číslo Bg číslem x-1.
-x+Bgx-Bg=\pi -3
Odečtěte 3 od obou stran.
Bgx-Bg=\pi -3+x
Přidat x na obě strany.
\left(Bx-B\right)g=\pi -3+x
Slučte všechny členy obsahující g.
\left(Bx-B\right)g=x+\pi -3
Rovnice je ve standardním tvaru.
\frac{\left(Bx-B\right)g}{Bx-B}=\frac{x+\pi -3}{Bx-B}
Vydělte obě strany hodnotou Bx-B.
g=\frac{x+\pi -3}{Bx-B}
Dělení číslem Bx-B ruší násobení číslem Bx-B.
g=\frac{x+\pi -3}{B\left(x-1\right)}
Vydělte číslo x-3+\pi číslem Bx-B.