Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Roznásobit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo 2x^{2} číslem \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Vzhledem k tomu, že \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} a \frac{1}{\left(x-2\right)\left(x+1\right)} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Proveďte násobení ve výrazu 2x^{2}\left(x-2\right)\left(x+1\right)-1.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Slučte stejné členy ve výrazu 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Pokud chcete výraz \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)} umocnit, umocněte čitatel i jmenovatel. Pak teprve proveďte operaci dělení.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Roznásobte \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7\left(x-1\right)\left(x+2\right)
S využitím distributivnosti vynásobte číslo -8 číslem 2x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+\left(7x-7\right)\left(x+2\right)
S využitím distributivnosti vynásobte číslo 7 číslem x-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7x^{2}+7x-14
S využitím distributivnosti vynásobte číslo 7x-7 číslem x+2 a slučte stejné členy.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}+8+7x-14
Sloučením -16x^{2} a 7x^{2} získáte -9x^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}-6+7x
Odečtěte 14 od 8 a dostanete -6.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo -9x^{2}-6+7x číslem \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Vzhledem k tomu, že \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} a \frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Proveďte násobení ve výrazu \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Slučte stejné členy ve výrazu 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{x^{4}-2x^{3}-3x^{2}+4x+4}
Roznásobte \left(x-2\right)^{2}\left(x+1\right)^{2}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo 2x^{2} číslem \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Vzhledem k tomu, že \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} a \frac{1}{\left(x-2\right)\left(x+1\right)} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Proveďte násobení ve výrazu 2x^{2}\left(x-2\right)\left(x+1\right)-1.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Slučte stejné členy ve výrazu 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Pokud chcete výraz \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)} umocnit, umocněte čitatel i jmenovatel. Pak teprve proveďte operaci dělení.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Roznásobte \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7\left(x-1\right)\left(x+2\right)
S využitím distributivnosti vynásobte číslo -8 číslem 2x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+\left(7x-7\right)\left(x+2\right)
S využitím distributivnosti vynásobte číslo 7 číslem x-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7x^{2}+7x-14
S využitím distributivnosti vynásobte číslo 7x-7 číslem x+2 a slučte stejné členy.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}+8+7x-14
Sloučením -16x^{2} a 7x^{2} získáte -9x^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}-6+7x
Odečtěte 14 od 8 a dostanete -6.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo -9x^{2}-6+7x číslem \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Vzhledem k tomu, že \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} a \frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Proveďte násobení ve výrazu \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Slučte stejné členy ve výrazu 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{x^{4}-2x^{3}-3x^{2}+4x+4}
Roznásobte \left(x-2\right)^{2}\left(x+1\right)^{2}.