Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Roznásobit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Rozviňte výraz \left(\frac{1}{2}x-1\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Zvažte \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Násobení je možné převést na rozdíl druhých mocnin pomocí tohoto pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Umocněte číslo 1 na druhou.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Roznásobte \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Výpočtem \frac{1}{2} na 2 získáte \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Sloučením \frac{1}{4}x^{2} a \frac{1}{4}x^{2} získáte \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Odečtěte 1 od 1 a dostanete 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Zvažte \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Násobení je možné převést na rozdíl druhých mocnin pomocí tohoto pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Umocněte číslo 1 na druhou.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Roznásobte \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Výpočtem -\frac{1}{2} na 2 získáte \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Sloučením \frac{1}{2}x^{2} a \frac{1}{4}x^{2} získáte \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Rozviňte výraz \left(\frac{1}{2}x+1\right)^{2} podle binomické věty \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}-x+x+1-1
Sloučením \frac{3}{4}x^{2} a \frac{1}{4}x^{2} získáte x^{2}.
x^{2}+1-1
Sloučením -x a x získáte 0.
x^{2}
Odečtěte 1 od 1 a dostanete 0.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Rozviňte výraz \left(\frac{1}{2}x-1\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Zvažte \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Násobení je možné převést na rozdíl druhých mocnin pomocí tohoto pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Umocněte číslo 1 na druhou.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Roznásobte \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Výpočtem \frac{1}{2} na 2 získáte \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Sloučením \frac{1}{4}x^{2} a \frac{1}{4}x^{2} získáte \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Odečtěte 1 od 1 a dostanete 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Zvažte \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Násobení je možné převést na rozdíl druhých mocnin pomocí tohoto pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Umocněte číslo 1 na druhou.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Roznásobte \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Výpočtem -\frac{1}{2} na 2 získáte \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Sloučením \frac{1}{2}x^{2} a \frac{1}{4}x^{2} získáte \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Rozviňte výraz \left(\frac{1}{2}x+1\right)^{2} podle binomické věty \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}-x+x+1-1
Sloučením \frac{3}{4}x^{2} a \frac{1}{4}x^{2} získáte x^{2}.
x^{2}+1-1
Sloučením -x a x získáte 0.
x^{2}
Odečtěte 1 od 1 a dostanete 0.