Vyřešte pro: x (complex solution)
x=-3\sqrt{3}i-3\approx -3-5,196152423i
x=6
x=-3+3\sqrt{3}i\approx -3+5,196152423i
Vyřešte pro: x
x=6
Graf
Sdílet
Zkopírováno do schránky
x^{3}-216=0
Odečtěte 216 od obou stran.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Podle věty o racionálních kořenech jsou všechny racionální kořeny polynomu ve tvaru \frac{p}{q}, kde p je dělitelem konstantního členu -216 a q je dělitelem vedoucího koeficientu 1. Uveďte všechny kandidáty \frac{p}{q}
x=6
Najděte jeden takový kořen tak, že vyzkoušíte všechny celočíselné hodnoty od nejmenší hodnoty po absolutní hodnotu. Pokud žádné celočíselné kořeny nenajdete, vyzkoušejte zlomky.
x^{2}+6x+36=0
Podle faktoru binomická x-k je součinitel polynomu pro každý kořenový k. Vydělte číslo x^{3}-216 číslem x-6 a dostanete x^{2}+6x+36. Umožňuje vyřešit rovnici, ve které se výsledek rovná 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
Všechny rovnice typu ax^{2}+bx+c=0 je možné vyřešit pomocí vzorce kvadratické rovnice: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. V uvedeném vzorci nahraďte a hodnotou 1, b hodnotou 6 a c hodnotou 36.
x=\frac{-6±\sqrt{-108}}{2}
Proveďte výpočty.
x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
Pokud je ± plus a ± je mínus, vyřešte x^{2}+6x+36=0 rovnice.
x=6 x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
Uveďte všechna zjištěná řešení.
x^{3}-216=0
Odečtěte 216 od obou stran.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Podle věty o racionálních kořenech jsou všechny racionální kořeny polynomu ve tvaru \frac{p}{q}, kde p je dělitelem konstantního členu -216 a q je dělitelem vedoucího koeficientu 1. Uveďte všechny kandidáty \frac{p}{q}
x=6
Najděte jeden takový kořen tak, že vyzkoušíte všechny celočíselné hodnoty od nejmenší hodnoty po absolutní hodnotu. Pokud žádné celočíselné kořeny nenajdete, vyzkoušejte zlomky.
x^{2}+6x+36=0
Podle faktoru binomická x-k je součinitel polynomu pro každý kořenový k. Vydělte číslo x^{3}-216 číslem x-6 a dostanete x^{2}+6x+36. Umožňuje vyřešit rovnici, ve které se výsledek rovná 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
Všechny rovnice typu ax^{2}+bx+c=0 je možné vyřešit pomocí vzorce kvadratické rovnice: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. V uvedeném vzorci nahraďte a hodnotou 1, b hodnotou 6 a c hodnotou 36.
x=\frac{-6±\sqrt{-108}}{2}
Proveďte výpočty.
x\in \emptyset
Vzhledem k tomu, že v poli reálného čísla není definovaná druhá odmocnina záporného čísla, neexistují žádná řešení.
x=6
Uveďte všechna zjištěná řešení.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}