Přejít k hlavnímu obsahu
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

\left(x+11\right)\left(x^{2}-2x-3\right)
Podle věty o racionálních kořenech jsou všechny racionální kořeny polynomu ve tvaru \frac{p}{q}, kde p je dělitelem konstantního členu -33 a q je dělitelem vedoucího koeficientu 1. Jeden takový kořen je -11. Součinitele polynomu rozdělíte x+11.
a+b=-2 ab=1\left(-3\right)=-3
Zvažte x^{2}-2x-3. Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako x^{2}+ax+bx-3. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
a=-3 b=1
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je záporný, má záporné číslo vyšší absolutní hodnotu než kladné číslo. Jediná taková dvojice představuje systémové řešení.
\left(x^{2}-3x\right)+\left(x-3\right)
Zapište x^{2}-2x-3 jako: \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Vytkněte x z výrazu x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Vytkněte společný člen x-3 s využitím distributivnosti.
\left(x-3\right)\left(x+1\right)\left(x+11\right)
Přepište celý rozložený výraz.