Přejít k hlavnímu obsahu
Vyřešte pro: x (complex solution)
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

x^{2}-x+1=0
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, -1 za b a 1 za c.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2}
Přidejte uživatele 1 do skupiny -4.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2}
Vypočítejte druhou odmocninu čísla -3.
x=\frac{1±\sqrt{3}i}{2}
Opakem -1 je 1.
x=\frac{1+\sqrt{3}i}{2}
Teď vyřešte rovnici x=\frac{1±\sqrt{3}i}{2}, když ± je plus. Přidejte uživatele 1 do skupiny i\sqrt{3}.
x=\frac{-\sqrt{3}i+1}{2}
Teď vyřešte rovnici x=\frac{1±\sqrt{3}i}{2}, když ± je minus. Odečtěte číslo i\sqrt{3} od čísla 1.
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Rovnice je teď vyřešená.
x^{2}-x+1=0
Takové kvadratické rovnice je možné vyřešit doplněním na druhou mocninu dvojčlenu. Pokud chcete rovnici doplnit na druhou mocninu dvojčlenu, musí být nejdříve ve tvaru x^{2}+bx=c.
x^{2}-x+1-1=-1
Odečtěte hodnotu 1 od obou stran rovnice.
x^{2}-x=-1
Odečtením čísla 1 od něj samotného dostaneme hodnotu 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-1+\left(-\frac{1}{2}\right)^{2}
Koeficient (tj. -1) členu x vydělte číslem 2, abyste získali -\frac{1}{2}. K oběma stranám rovnice pak přičtěte druhou mocninu -\frac{1}{2}. V tomto kroku se z levé strany rovnice stane čtvercové číslo.
x^{2}-x+\frac{1}{4}=-1+\frac{1}{4}
Umocněte zlomek -\frac{1}{2} na druhou tak, že umocníte na druhou čitatele i jmenovatele zlomku.
x^{2}-x+\frac{1}{4}=-\frac{3}{4}
Přidejte uživatele -1 do skupiny \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{3}{4}
Rozložte rovnici x^{2}-x+\frac{1}{4}. Když rovnice x^{2}+bx+c představuje čtvercové číslo, obecně se vždy dá rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Vypočítejte druhou odmocninu obou stran rovnice.
x-\frac{1}{2}=\frac{\sqrt{3}i}{2} x-\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Proveďte zjednodušení.
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Připočítejte \frac{1}{2} k oběma stranám rovnice.