Přejít k hlavnímu obsahu
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

a+b=-9 ab=1\left(-10\right)=-10
Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako x^{2}+ax+bx-10. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
1,-10 2,-5
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je záporný, má záporné číslo vyšší absolutní hodnotu než kladné číslo. Uveďte všechny celočíselné páry, které dávají -10 produktu.
1-10=-9 2-5=-3
Vypočtěte součet pro jednotlivé dvojice.
a=-10 b=1
Řešením je dvojice se součtem -9.
\left(x^{2}-10x\right)+\left(x-10\right)
Zapište x^{2}-9x-10 jako: \left(x^{2}-10x\right)+\left(x-10\right).
x\left(x-10\right)+x-10
Vytkněte x z výrazu x^{2}-10x.
\left(x-10\right)\left(x+1\right)
Vytkněte společný člen x-10 s využitím distributivnosti.
x^{2}-9x-10=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-10\right)}}{2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-10\right)}}{2}
Umocněte číslo -9 na druhou.
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2}
Vynásobte číslo -4 číslem -10.
x=\frac{-\left(-9\right)±\sqrt{121}}{2}
Přidejte uživatele 81 do skupiny 40.
x=\frac{-\left(-9\right)±11}{2}
Vypočítejte druhou odmocninu čísla 121.
x=\frac{9±11}{2}
Opakem -9 je 9.
x=\frac{20}{2}
Teď vyřešte rovnici x=\frac{9±11}{2}, když ± je plus. Přidejte uživatele 9 do skupiny 11.
x=10
Vydělte číslo 20 číslem 2.
x=-\frac{2}{2}
Teď vyřešte rovnici x=\frac{9±11}{2}, když ± je minus. Odečtěte číslo 11 od čísla 9.
x=-1
Vydělte číslo -2 číslem 2.
x^{2}-9x-10=\left(x-10\right)\left(x-\left(-1\right)\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 10 za x_{1} a -1 za x_{2}.
x^{2}-9x-10=\left(x-10\right)\left(x+1\right)
Zjednodušte všechny výrazy ve tvaru p-\left(-q\right) na p+q.