Přejít k hlavnímu obsahu
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

a+b=-4 ab=1\times 3=3
Rozložte výraz vytýkáním. Nejdříve je nutné ho přepsat jako: x^{2}+ax+bx+3. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
a=-3 b=-1
Vzhledem k tomu, že výraz ab je kladný, mají hodnoty a a b stejné znaménko. Vzhledem k tomu, že výraz a+b je záporný, mají obě hodnoty a i b záporné znaménko. Jediná taková dvojice představuje systémové řešení.
\left(x^{2}-3x\right)+\left(-x+3\right)
Zapište x^{2}-4x+3 jako: \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Vytkněte x z první závorky a -1 z druhé závorky.
\left(x-3\right)\left(x-1\right)
Vytkněte společný člen x-3 s využitím distributivnosti.
x^{2}-4x+3=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Umocněte číslo -4 na druhou.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Vynásobte číslo -4 číslem 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
Přidejte uživatele 16 do skupiny -12.
x=\frac{-\left(-4\right)±2}{2}
Vypočítejte druhou odmocninu čísla 4.
x=\frac{4±2}{2}
Opakem -4 je 4.
x=\frac{6}{2}
Teď vyřešte rovnici x=\frac{4±2}{2}, když ± je plus. Přidejte uživatele 4 do skupiny 2.
x=3
Vydělte číslo 6 číslem 2.
x=\frac{2}{2}
Teď vyřešte rovnici x=\frac{4±2}{2}, když ± je minus. Odečtěte číslo 2 od čísla 4.
x=1
Vydělte číslo 2 číslem 2.
x^{2}-4x+3=\left(x-3\right)\left(x-1\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 3 za x_{1} a 1 za x_{2}.