Vyřešte pro: y
y=\frac{x^{2}+1}{2x+1}
x\neq -\frac{1}{2}
Vyřešte pro: x (complex solution)
x=\sqrt{y^{2}+y-1}+y
x=-\sqrt{y^{2}+y-1}+y
Vyřešte pro: x
x=\sqrt{y^{2}+y-1}+y
x=-\sqrt{y^{2}+y-1}+y\text{, }y\geq \frac{\sqrt{5}-1}{2}\text{ or }y\leq \frac{-\sqrt{5}-1}{2}
Graf
Sdílet
Zkopírováno do schránky
-2yx-y+1=-x^{2}
Odečtěte x^{2} od obou stran. Po odečtení hodnoty od nuly dostaneme stejnou zápornou hodnotu.
-2yx-y=-x^{2}-1
Odečtěte 1 od obou stran.
\left(-2x-1\right)y=-x^{2}-1
Slučte všechny členy obsahující y.
\frac{\left(-2x-1\right)y}{-2x-1}=\frac{-x^{2}-1}{-2x-1}
Vydělte obě strany hodnotou -2x-1.
y=\frac{-x^{2}-1}{-2x-1}
Dělení číslem -2x-1 ruší násobení číslem -2x-1.
y=\frac{x^{2}+1}{2x+1}
Vydělte číslo -x^{2}-1 číslem -2x-1.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}