Vyřešte pro: x
x=\frac{\sqrt{21}-5}{2}\approx -0,208712153
x=\frac{-\sqrt{21}-5}{2}\approx -4,791287847
Graf
Sdílet
Zkopírováno do schránky
x^{2}+5x+1=0
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-5±\sqrt{5^{2}-4}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, 5 za b a 1 za c.
x=\frac{-5±\sqrt{25-4}}{2}
Umocněte číslo 5 na druhou.
x=\frac{-5±\sqrt{21}}{2}
Přidejte uživatele 25 do skupiny -4.
x=\frac{\sqrt{21}-5}{2}
Teď vyřešte rovnici x=\frac{-5±\sqrt{21}}{2}, když ± je plus. Přidejte uživatele -5 do skupiny \sqrt{21}.
x=\frac{-\sqrt{21}-5}{2}
Teď vyřešte rovnici x=\frac{-5±\sqrt{21}}{2}, když ± je minus. Odečtěte číslo \sqrt{21} od čísla -5.
x=\frac{\sqrt{21}-5}{2} x=\frac{-\sqrt{21}-5}{2}
Rovnice je teď vyřešená.
x^{2}+5x+1=0
Takové kvadratické rovnice je možné vyřešit doplněním na druhou mocninu dvojčlenu. Pokud chcete rovnici doplnit na druhou mocninu dvojčlenu, musí být nejdříve ve tvaru x^{2}+bx=c.
x^{2}+5x+1-1=-1
Odečtěte hodnotu 1 od obou stran rovnice.
x^{2}+5x=-1
Odečtením čísla 1 od něj samotného dostaneme hodnotu 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-1+\left(\frac{5}{2}\right)^{2}
Vydělte 5, koeficient x termínu 2 k získání \frac{5}{2}. Potom přidejte čtvereček \frac{5}{2} na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}+5x+\frac{25}{4}=-1+\frac{25}{4}
Umocněte zlomek \frac{5}{2} na druhou tak, že umocníte na druhou čitatele i jmenovatele zlomku.
x^{2}+5x+\frac{25}{4}=\frac{21}{4}
Přidejte uživatele -1 do skupiny \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{21}{4}
Činitel x^{2}+5x+\frac{25}{4}. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Vypočítejte druhou odmocninu obou stran rovnice.
x+\frac{5}{2}=\frac{\sqrt{21}}{2} x+\frac{5}{2}=-\frac{\sqrt{21}}{2}
Proveďte zjednodušení.
x=\frac{\sqrt{21}-5}{2} x=\frac{-\sqrt{21}-5}{2}
Odečtěte hodnotu \frac{5}{2} od obou stran rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}