Přejít k hlavnímu obsahu
Vyřešte pro: x (complex solution)
Tick mark Image
Vyřešte pro: x
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

x^{2}+4x-7=0
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-4±\sqrt{4^{2}-4\left(-7\right)}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, 4 za b a -7 za c.
x=\frac{-4±\sqrt{16-4\left(-7\right)}}{2}
Umocněte číslo 4 na druhou.
x=\frac{-4±\sqrt{16+28}}{2}
Vynásobte číslo -4 číslem -7.
x=\frac{-4±\sqrt{44}}{2}
Přidejte uživatele 16 do skupiny 28.
x=\frac{-4±2\sqrt{11}}{2}
Vypočítejte druhou odmocninu čísla 44.
x=\frac{2\sqrt{11}-4}{2}
Teď vyřešte rovnici x=\frac{-4±2\sqrt{11}}{2}, když ± je plus. Přidejte uživatele -4 do skupiny 2\sqrt{11}.
x=\sqrt{11}-2
Vydělte číslo -4+2\sqrt{11} číslem 2.
x=\frac{-2\sqrt{11}-4}{2}
Teď vyřešte rovnici x=\frac{-4±2\sqrt{11}}{2}, když ± je minus. Odečtěte číslo 2\sqrt{11} od čísla -4.
x=-\sqrt{11}-2
Vydělte číslo -4-2\sqrt{11} číslem 2.
x=\sqrt{11}-2 x=-\sqrt{11}-2
Rovnice je teď vyřešená.
x^{2}+4x-7=0
Takové kvadratické rovnice je možné vyřešit doplněním na druhou mocninu dvojčlenu. Pokud chcete rovnici doplnit na druhou mocninu dvojčlenu, musí být nejdříve ve tvaru x^{2}+bx=c.
x^{2}+4x-7-\left(-7\right)=-\left(-7\right)
Připočítejte 7 k oběma stranám rovnice.
x^{2}+4x=-\left(-7\right)
Odečtením čísla -7 od něj samotného dostaneme hodnotu 0.
x^{2}+4x=7
Odečtěte číslo -7 od čísla 0.
x^{2}+4x+2^{2}=7+2^{2}
Koeficient (tj. 4) členu x vydělte číslem 2, abyste získali 2. K oběma stranám rovnice pak přičtěte druhou mocninu 2. V tomto kroku se z levé strany rovnice stane čtvercové číslo.
x^{2}+4x+4=7+4
Umocněte číslo 2 na druhou.
x^{2}+4x+4=11
Přidejte uživatele 7 do skupiny 4.
\left(x+2\right)^{2}=11
Rozložte rovnici x^{2}+4x+4. Když rovnice x^{2}+bx+c představuje čtvercové číslo, obecně se vždy dá rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{11}
Vypočítejte druhou odmocninu obou stran rovnice.
x+2=\sqrt{11} x+2=-\sqrt{11}
Proveďte zjednodušení.
x=\sqrt{11}-2 x=-\sqrt{11}-2
Odečtěte hodnotu 2 od obou stran rovnice.
x^{2}+4x-7=0
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-4±\sqrt{4^{2}-4\left(-7\right)}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, 4 za b a -7 za c.
x=\frac{-4±\sqrt{16-4\left(-7\right)}}{2}
Umocněte číslo 4 na druhou.
x=\frac{-4±\sqrt{16+28}}{2}
Vynásobte číslo -4 číslem -7.
x=\frac{-4±\sqrt{44}}{2}
Přidejte uživatele 16 do skupiny 28.
x=\frac{-4±2\sqrt{11}}{2}
Vypočítejte druhou odmocninu čísla 44.
x=\frac{2\sqrt{11}-4}{2}
Teď vyřešte rovnici x=\frac{-4±2\sqrt{11}}{2}, když ± je plus. Přidejte uživatele -4 do skupiny 2\sqrt{11}.
x=\sqrt{11}-2
Vydělte číslo -4+2\sqrt{11} číslem 2.
x=\frac{-2\sqrt{11}-4}{2}
Teď vyřešte rovnici x=\frac{-4±2\sqrt{11}}{2}, když ± je minus. Odečtěte číslo 2\sqrt{11} od čísla -4.
x=-\sqrt{11}-2
Vydělte číslo -4-2\sqrt{11} číslem 2.
x=\sqrt{11}-2 x=-\sqrt{11}-2
Rovnice je teď vyřešená.
x^{2}+4x-7=0
Takové kvadratické rovnice je možné vyřešit doplněním na druhou mocninu dvojčlenu. Pokud chcete rovnici doplnit na druhou mocninu dvojčlenu, musí být nejdříve ve tvaru x^{2}+bx=c.
x^{2}+4x-7-\left(-7\right)=-\left(-7\right)
Připočítejte 7 k oběma stranám rovnice.
x^{2}+4x=-\left(-7\right)
Odečtením čísla -7 od něj samotného dostaneme hodnotu 0.
x^{2}+4x=7
Odečtěte číslo -7 od čísla 0.
x^{2}+4x+2^{2}=7+2^{2}
Koeficient (tj. 4) členu x vydělte číslem 2, abyste získali 2. K oběma stranám rovnice pak přičtěte druhou mocninu 2. V tomto kroku se z levé strany rovnice stane čtvercové číslo.
x^{2}+4x+4=7+4
Umocněte číslo 2 na druhou.
x^{2}+4x+4=11
Přidejte uživatele 7 do skupiny 4.
\left(x+2\right)^{2}=11
Rozložte rovnici x^{2}+4x+4. Když rovnice x^{2}+bx+c představuje čtvercové číslo, obecně se vždy dá rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{11}
Vypočítejte druhou odmocninu obou stran rovnice.
x+2=\sqrt{11} x+2=-\sqrt{11}
Proveďte zjednodušení.
x=\sqrt{11}-2 x=-\sqrt{11}-2
Odečtěte hodnotu 2 od obou stran rovnice.