Vyřešte pro: x
x=38
x=68
Graf
Sdílet
Zkopírováno do schránky
x^{2}+2584-106x=0
Odečtěte 106x od obou stran.
x^{2}-106x+2584=0
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-\left(-106\right)±\sqrt{\left(-106\right)^{2}-4\times 2584}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, -106 za b a 2584 za c.
x=\frac{-\left(-106\right)±\sqrt{11236-4\times 2584}}{2}
Umocněte číslo -106 na druhou.
x=\frac{-\left(-106\right)±\sqrt{11236-10336}}{2}
Vynásobte číslo -4 číslem 2584.
x=\frac{-\left(-106\right)±\sqrt{900}}{2}
Přidejte uživatele 11236 do skupiny -10336.
x=\frac{-\left(-106\right)±30}{2}
Vypočítejte druhou odmocninu čísla 900.
x=\frac{106±30}{2}
Opakem -106 je 106.
x=\frac{136}{2}
Teď vyřešte rovnici x=\frac{106±30}{2}, když ± je plus. Přidejte uživatele 106 do skupiny 30.
x=68
Vydělte číslo 136 číslem 2.
x=\frac{76}{2}
Teď vyřešte rovnici x=\frac{106±30}{2}, když ± je minus. Odečtěte číslo 30 od čísla 106.
x=38
Vydělte číslo 76 číslem 2.
x=68 x=38
Rovnice je teď vyřešená.
x^{2}+2584-106x=0
Odečtěte 106x od obou stran.
x^{2}-106x=-2584
Odečtěte 2584 od obou stran. Po odečtení hodnoty od nuly dostaneme stejnou zápornou hodnotu.
x^{2}-106x+\left(-53\right)^{2}=-2584+\left(-53\right)^{2}
Vydělte -106, koeficient x termínu 2 k získání -53. Potom přidejte čtvereček -53 na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}-106x+2809=-2584+2809
Umocněte číslo -53 na druhou.
x^{2}-106x+2809=225
Přidejte uživatele -2584 do skupiny 2809.
\left(x-53\right)^{2}=225
Činitel x^{2}-106x+2809. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-53\right)^{2}}=\sqrt{225}
Vypočítejte druhou odmocninu obou stran rovnice.
x-53=15 x-53=-15
Proveďte zjednodušení.
x=68 x=38
Připočítejte 53 k oběma stranám rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}